9086/system/decoder.v

1073 lines
37 KiB
Coq
Raw Normal View History

/* decoder.v - Implementation of instruction decoding logic
This file is part of the 9086 project.
Copyright (c) 2023 Efthymios Kritikos
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
`include "exec_state_def.v"
`include "alu_header.v"
`include "ucode_header.v"
`include "error_header.v"
`include "config.v"
`define DE_STATE_BITS 2
`define DE_STATE_ENTRY 2'b01
`define DE_HALT 2'b10
module decoder(
2023-06-01 01:13:55 +00:00
/***************** GENERAL *****************/
/* Input from sys. */ input clock, input reset
/* Output to sys. */ ,output reg MEM_OR_IO_LATCHED, output reg [`ERROR_BITS-1:0] ERROR_LATCHED, output reg HALT_LATCHED
/*************** INPUT FROM IF ***************/
/* */ ,input wire [31:0] IF2DE_INSTRUCTION, input wire VALID_INSTRUCTION
/* */ ,input wire [15:0] INSTRUCTION_LOCATION
/*************** OUTPUT TO IF ***************/
/* OUTPUT TO IF */ ,output reg VALID_INSTRUCTION_ACK
/*************** INPUT FROM EX ***************/
/* */ ,input wire [7:0] EX2DE_FLAGS,input wire next_exec
/*************** OUTPUT TO DE ***************/
/* SYNC SIGNALS */ ,output reg set_initial_values, output reg valid_exec_data
/* INSTR. PARAMS */ ,output reg Wbit_LATCHED, output reg [2:0] IN_MOD_LATCHED, output reg [2:0] OUT_MOD_LATCHED, output reg [2:0] RM_LATCHED
/* DATA */ ,output reg [15:0] PARAM1_LATCHED, output reg [15:0] PARAM2_LATCHED,output reg [15:0] ProgCount
/* STATE CONTROL */ ,output reg [`EXEC_STATE_BITS-1:0] next_state_LATCHED
/* ALU CONTROL */ ,output reg [1:0] in_alu_sel1_LATCHED, output reg [1:0] in_alu_sel2_LATCHED,output reg [2:0] ALU_OP_LATCHED
/* OTHER */ ,output reg memio_address_select_LATCHED
/************* OUTPUT TO REGISTERS ************/
/* */ ,output reg [3:0] reg_write_addr_LATCHED, output reg [3:0] reg_read_port2_addr_LATCHED, output reg [3:0] reg_read_port1_addr_LATCHED
`ifdef CALCULATE_IPC
2023-06-01 01:13:55 +00:00
/* STATISTICS */ ,output reg new_instruction
`endif
2023-06-01 01:13:55 +00:00
);
reg SIMPLE_MICRO; /* use simple decodings (=0) or microcode data (=1) */
wire [`UCODE_ADDR_BITS-1:0] ucode_seq_addr_entry;
reg [`UCODE_ADDR_BITS-1:0] ucode_seq_addr;
/* verilator lint_off UNUSEDSIGNAL */
wire DEPENDS_ON_PREVIOUS;
/* verilator lint_on UNUSEDSIGNAL */
wire set_params;
2023-06-01 01:13:55 +00:00
wire MEM_OR_IO, HALT,Wbit,memio_address_select;
wire [1:0] in_alu_sel1,in_alu_sel2;
wire [2:0] IN_MOD,OUT_MOD,RM,ALU_OP;
wire [3:0] reg_write_addr,reg_read_port2_addr,reg_read_port1_addr;
wire [15:0] PARAM1,PARAM2;
wire [`EXEC_STATE_BITS-1:0] next_state;
wire [`ERROR_BITS-1:0] ERROR;
instruction_decode instruction_decode(
2023-06-01 01:13:55 +00:00
/* INPUT */ IF2DE_INSTRUCTION,{8'h0,EX2DE_FLAGS}
/* MICROCODE */ ,ucode_seq_addr_entry,SIMPLE_MICRO,ucode_seq_addr
/* OUTPUT */ ,DEPENDS_ON_PREVIOUS, set_params, MEM_OR_IO,ERROR, HALT
/*************** INPUT FROM DE ***************/
/* INSTR. PARAMS */ ,Wbit, IN_MOD, OUT_MOD, RM
/* DATA */ ,PARAM1, PARAM2
/* STATE CONTROL */ ,next_state
/* ALU CONTROL */ ,in_alu_sel1,in_alu_sel2, ALU_OP
/* OTHER */ ,memio_address_select
/***************** REGISTERS *****************/
/* */ ,reg_write_addr, reg_read_port2_addr, reg_read_port1_addr
);
wire [2:0] instr_end;
InstrSize InstrSize({IF2DE_INSTRUCTION[31:24],IF2DE_INSTRUCTION[21:19]},instr_end);
reg owe_set_init;
//TODO: Why do we need to make a local copy on a register for the code inside the always @(next_state) to read it?
// For some reason the raw VALID_INSTRUCTION signal reads always 1 and it has something to do with the block
// being triggered by next_exec
reg VALID_INSTRUCTION_lc;
always @(VALID_INSTRUCTION)begin VALID_INSTRUCTION_lc<=VALID_INSTRUCTION; end
reg wait_;
always @(posedge clock)begin
if(reset==0)begin
`ifdef CALCULATE_IPC
new_instruction<=0;
`endif
valid_exec_data<=0;
ucode_seq_addr <= `UCODE_NO_INSTRUCTION;
SIMPLE_MICRO <= 0;
owe_set_init <= 0;
set_initial_values<=0;
first_ucode <= 0;
HALT_LATCHED <= 0;
ERROR_LATCHED <= `ERROR_BITS'h0;
VALID_INSTRUCTION_ACK <= 0;
wait_<=0;
end else begin
2023-11-05 20:17:59 +00:00
if(wait_!=0) begin
2023-11-06 01:35:48 +00:00
set_initial_values <= 0;
wait_<=0;
2023-11-05 20:17:59 +00:00
VALID_INSTRUCTION_ACK<=0;
end else if(next_exec==1'b1)begin
if ( ( VALID_INSTRUCTION_lc == 1 || SIMPLE_MICRO == 1 ) /*&& DEPENDS_ON_PREVIOUS == 0 && ucode_seq_addr_entry==`UCODE_NO_INSTRUCTION*/) begin
//`define LATCH(VAR) VAR_LATCHED <= VAR; //TODO would this work?
IN_MOD_LATCHED <= IN_MOD;
OUT_MOD_LATCHED <= OUT_MOD;
RM_LATCHED <= RM;
MEM_OR_IO_LATCHED <= MEM_OR_IO;
PARAM1_LATCHED <= PARAM1;
PARAM2_LATCHED <= PARAM2;
ALU_OP_LATCHED <= ALU_OP;
in_alu_sel1_LATCHED <= in_alu_sel1;
in_alu_sel2_LATCHED <= in_alu_sel2;
reg_read_port1_addr_LATCHED <= reg_read_port1_addr;
reg_read_port2_addr_LATCHED <= reg_read_port2_addr;
reg_write_addr_LATCHED <= reg_write_addr;
Wbit_LATCHED <= Wbit;
ERROR_LATCHED <= ERROR;
HALT_LATCHED <= HALT;
next_state_LATCHED <= next_state;
memio_address_select_LATCHED <= memio_address_select;
if ( (ucode_seq_addr==`UCODE_NO_INSTRUCTION) && (ucode_seq_addr_entry!=`UCODE_NO_INSTRUCTION) )begin
/* switch to microcode decoding */
ucode_seq_addr <= ucode_seq_addr_entry;
SIMPLE_MICRO <= 1;
first_ucode <= 1;
2023-11-06 01:35:48 +00:00
set_initial_values <= 1;
valid_exec_data <= 0;
wait_<=1;
end else begin
if(SIMPLE_MICRO==0||first_ucode==1||owe_set_init==1)begin
first_ucode <= 0;
/* This runs at the start of the execution of an 8086 instruction */
`ifdef DEBUG_PC_ADDRESS
$display("Running command at %04x (%08x)",INSTRUCTION_LOCATION,IF2DE_INSTRUCTION);
`endif
`ifdef CALCULATE_IPC
new_instruction <= !new_instruction;
`endif
owe_set_init<=0;
ProgCount <= INSTRUCTION_LOCATION+{12'b0,instr_end};
2023-11-05 20:17:59 +00:00
VALID_INSTRUCTION_ACK <= 1;
end
if(set_params)begin
2023-11-06 01:35:48 +00:00
set_initial_values <= 1;
end
/* This runs at the start of each execution cycle, with microcode this is more than once per 8086 instruction */
valid_exec_data<=1;
wait_<=1;
if( SIMPLE_MICRO == 1 ) begin
ucode_seq_addr <= ucode_seq_addr_entry; /*Reused for next address*/
if( ucode_seq_addr_entry == `UCODE_NO_INSTRUCTION )begin
/*Finished microcode*/
SIMPLE_MICRO <= 0;
end
end
end
end else
valid_exec_data<=0;
end else
valid_exec_data<=0;
end
end
reg first_ucode;
endmodule
2023-06-01 01:13:55 +00:00
///////////////////////// Instruction specific decoding ///////////////////////////////////
module microcode(
2023-06-01 01:13:55 +00:00
input [`UCODE_ADDR_BITS-1:0] ADDR
,output [`UCODE_DATA_BITS-1:0] DATA
);
initial begin
`ifndef YOSYS
string ucode_path;
if($value$plusargs("MICROCODE=%s",ucode_path))begin
$readmemb(ucode_path,ucode_rom,0,`UCODE_SIZE-1);
end else begin
$display("Please supply microcode rom file as a runtime vvp argument +MICROCODE=<path>");
$finish;
end
`else
//TODO: don't have it hard coded
$readmemb("ucode.txt",ucode_rom,0,`UCODE_SIZE-1);
`endif
end
reg [`UCODE_DATA_BITS-1:0] ucode_rom [ 0:`UCODE_SIZE-1 ];
assign DATA=ucode_rom[ADDR];
endmodule
module instruction_decode(
2023-06-01 01:13:55 +00:00
/* INPUTS */ input wire [31:0] INSTRUCTION,input wire [15:0] FLAGS
/* MICROCODE */ ,output reg [`UCODE_ADDR_BITS-1:0] seq_addr_entry, input wire SIMPLE_MICRO, input wire [`UCODE_ADDR_BITS-1:0] seq_addr_input
/* OUTPUT */ ,output reg DEPENDS_ON_PREVIOUS, output reg set_params,output reg MEM_OR_IO, output reg [`ERROR_BITS-1:0] ERROR, output reg HALT
/*************** INPUT FROM DE ***************/
/* INSTR. PARAMS */ ,output reg Wbit, output reg [2:0] IN_MOD, output reg [2:0] OUT_MOD, output reg [2:0] RM
/* DATA */ ,output reg [15:0] PARAM1, output reg [15:0] PARAM2
/* STATE CONTROL */ ,output reg [`EXEC_STATE_BITS-1:0] next_state
/* ALU CONTROL */ ,output reg [1:0] in_alu_sel1, output reg [1:0] in_alu_sel2,output reg [2:0] ALU_OP
/* OTHER */ ,output reg memio_address_select
/***************** REGISTERS *****************/
/* */ ,output reg [3:0] reg_write_addr, output reg [3:0] reg_read_port2_addr, output reg [3:0] reg_read_port1_addr
);
/* DEPENDS_ON_PREVIOUS - This encodes weather the instruction requires the previous to be finished in order to be decoded. This, for example, affects
* conditional jumps since flags are checked during decode.
*/
/* verilator lint_off UNUSEDSIGNAL */
wire [`UCODE_DATA_BITS-1:0] ucode_data;
/* verilator lint_on UNUSEDSIGNAL */
microcode ucode(seq_addr_input,ucode_data);
`define invalid_instruction next_state=`EXEC_WAIT;ERROR<=`ERR_UNIMPL_INSTRUCTION;HALT<=0;IN_MOD=3'b011;seq_addr_entry<=`UCODE_NO_INSTRUCTION;opcode_size=0;DEPENDS_ON_PREVIOUS<=0;
`define unimpl_addressing_mode next_state=`EXEC_WAIT;ERROR <= `ERR_UNIMPL_ADDRESSING_MODE;HALT<=0;IN_MOD=3'b011;seq_addr_entry<=`UCODE_NO_INSTRUCTION;
2023-02-24 11:54:13 +00:00
//TODO: A possible optimisation for instruction with 8bit parameter and
//opcode_size=0 would be to set PARAM1 here instead of sending execution over
//to EXEC_DE_LOAD_8_PARAM
`define normal_instruction seq_addr_entry<=`UCODE_NO_INSTRUCTION;ERROR<=`ERR_NO_ERROR;HALT<=0;MEM_OR_IO=0;
`define normal_microcoded ERROR<=`ERR_NO_ERROR;HALT<=0;MEM_OR_IO=0;
reg [1:0] PARAM_ACTION;
`define NO_LOAD 2'b00
`define LOAD_8 2'b01
`define LOAD_16 2'b10
2023-06-01 01:13:55 +00:00
reg Sbit,opcode_size;
// I use blocking for basically putting names on the different fields of INSTRUCTION and
// then branching off of that instead of the raw bits. otherwise the code
// would be identical
2023-06-01 01:13:55 +00:00
/* verilator lint_off BLKSEQ */
always @( FLAGS or INSTRUCTION or SIMPLE_MICRO or seq_addr_input ) begin
set_params = 1;
PARAM_ACTION = `NO_LOAD;
Sbit=0;//TODO: If no Sbit we assume it's 0,right?
if (SIMPLE_MICRO==0)begin
casez({INSTRUCTION[31:24],INSTRUCTION[21:19]})
11'b0000_010?_??? : begin
2023-02-24 11:54:13 +00:00
/* ADD - Add Immediate word/byte to accumulator */
/* 0 0 0 0 0 1 0 W | DATA | DATA if W |*/
opcode_size=0;
Wbit=INSTRUCTION[24:24];
IN_MOD=3'b011;
in_alu_sel1=2'b00;
in_alu_sel2=2'b01;
OUT_MOD=3'b011;
MEM_OR_IO=0;
reg_read_port2_addr={Wbit,3'b000};
reg_write_addr={Wbit,3'b000};
ALU_OP=`ALU_OP_ADD;
memio_address_select=0;
if(Wbit)
PARAM_ACTION=`LOAD_16;
else
PARAM_ACTION=`LOAD_8;
DEPENDS_ON_PREVIOUS<=0;
`normal_instruction;
end
11'b1000_00??_101, /* SUB */
11'b1000_00??_000 : /* ADD */ begin
2023-02-24 11:54:13 +00:00
/* ADD - Add Immediate word/byte to register/memory */
/* 1 0 0 0 0 0 S W | MOD 0 0 0 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */
/* SUB - Subtract immediate word/byte from register/memory */
/* 1 0 0 0 0 0 S W | MOD 1 0 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */
opcode_size=1;
Wbit=INSTRUCTION[24:24];
Sbit=INSTRUCTION[25:25];
IN_MOD={1'b0,INSTRUCTION[23:22]};
RM=INSTRUCTION[18:16];
in_alu_sel1=2'b00;
if(IN_MOD==3'b011)begin
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,RM};
reg_write_addr={Wbit,RM};
end else begin
in_alu_sel2=2'b00;
end
OUT_MOD=IN_MOD;
MEM_OR_IO=0;
memio_address_select=0;
case({Sbit,Wbit}) // TODO: Isn't this supposed to be just a LOAD_8?
2023-02-24 11:54:13 +00:00
2'b00,2'b11:begin
PARAM_ACTION=`LOAD_8;
2023-02-24 11:54:13 +00:00
end
2'b01:begin
PARAM_ACTION=`LOAD_16;
2023-02-24 11:54:13 +00:00
end
default:begin
`invalid_instruction
end
endcase
case(INSTRUCTION[21:19])
3'b000: ALU_OP=`ALU_OP_ADD;
3'b101: ALU_OP=`ALU_OP_SUB_REVERSE;
default:begin
/*Should be impossible*/
`invalid_instruction
end
endcase
DEPENDS_ON_PREVIOUS<=0;
`normal_instruction;
end
11'b1000_00??_111 : begin
/* CMP - compare Immediate with register / memory */
/* 1 0 0 0 0 0 S W | MOD 1 1 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */
opcode_size=1;
Wbit=INSTRUCTION[24:24];
Sbit=INSTRUCTION[25:25];
IN_MOD={1'b0,INSTRUCTION[23:22]};
RM=INSTRUCTION[18:16];
if ( {Sbit,Wbit} == 2'b10 )begin
`invalid_instruction
end
in_alu_sel1=2'b00;
OUT_MOD=3'b100;
MEM_OR_IO=0;
ALU_OP=`ALU_OP_SUB_REVERSE;
memio_address_select=0;
if(IN_MOD==3'b011)begin
/*compare register with param*/
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,RM};
next_state=`EXEC_WRITE_ENTRY;
end else begin
/*compare register indirect access
* with param */
in_alu_sel2=2'b00;
next_state=`EXEC_MEMIO_READ;
/*will call MEMIO_READ after EXEC_DE_LOAD..*/
end
if(Wbit)
PARAM_ACTION=`LOAD_16;
else
PARAM_ACTION=`LOAD_8;
DEPENDS_ON_PREVIOUS<=0;
`normal_instruction;
end
11'b1011_????_??? : begin
/* MOV - Move Immediate byte to register */
/* 1 0 1 1 W REG | DATA | DATA if W |*/
Wbit=INSTRUCTION[27:27]; /* IS 0 */
opcode_size=0;
IN_MOD=3'b011;
in_alu_sel1=2'b00;
in_alu_sel2=2'b00;
OUT_MOD=3'b011;
MEM_OR_IO=0;
reg_write_addr={Wbit,INSTRUCTION[26:24]};
if(Wbit)
PARAM_ACTION=`LOAD_16;
else
PARAM_ACTION=`LOAD_8;
PARAM2=0;
ALU_OP=`ALU_OP_ADD;
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1000_10??_??? : begin
/* MOV - Reg/Mem to/from register */
/* 1 0 0 0 1 0 D W | MOD REG RM | < DISP LO > | < DISP HI > |*/
opcode_size=1;
RM=INSTRUCTION[18:16];
Wbit=INSTRUCTION[24:24];
in_alu_sel1=2'b00;
PARAM1=0;
MEM_OR_IO=0;
if(INSTRUCTION[25:25] == 1)begin
/* Mem/Reg to reg */
IN_MOD={1'b0,INSTRUCTION[23:22]};
if(IN_MOD==3'b011)begin
/*Reg to Reg*/
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,RM};
next_state=`EXEC_WRITE_ENTRY;
end else begin
/*Mem to Reg*/
in_alu_sel2=2'b00;
next_state=`EXEC_MEMIO_READ;
end
OUT_MOD=3'b011;
reg_write_addr={Wbit,INSTRUCTION[21:19]};
end else begin
/* Reg to Mem/Reg */
IN_MOD=3'b011;
OUT_MOD={1'b0,INSTRUCTION[23:22]};
if(IN_MOD==3'b011)begin
/*Reg to Reg*/
in_alu_sel2=2'b01;
reg_write_addr={Wbit,RM};
next_state=`EXEC_WRITE_ENTRY;
end else begin
/*Reg to Mem*/
in_alu_sel2=2'b00;
next_state=`EXEC_DE_LOAD_REG_TO_PARAM;
end
reg_read_port2_addr={Wbit,INSTRUCTION[21:19]};
end
ALU_OP=`ALU_OP_ADD;
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b0100_????_???:begin//DEC
/* DEC - Decrement Register */
/* | 0 1 0 0 1 REG | */
/* INC - Increment Register */
/* | 0 1 0 0 0 REG | */
opcode_size=0;
Wbit=1;
in_alu_sel1=2'b01;
in_alu_sel2=2'b00;
OUT_MOD=3'b011;
MEM_OR_IO=0;
IN_MOD=3'b011;
PARAM2=1;
reg_read_port1_addr={1'b1,INSTRUCTION[26:24]};
reg_write_addr={1'b1,INSTRUCTION[26:24]};
if(INSTRUCTION[27:27]==0)
ALU_OP=`ALU_OP_ADD;
else
ALU_OP=`ALU_OP_SUB;
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1111_111?_00? : begin
/* INC - Register/Memory */
/* 1 1 1 1 1 1 1 W | MOD 0 0 0 R/M | < DISP LO> | < DISP HI> */
/* DEC - Register/Memory */
/* 1 1 1 1 1 1 1 W | MOD 0 0 1 R/M | < DISP LO> | < DISP HI> */
opcode_size=1;
Wbit=INSTRUCTION[24:24];
IN_MOD={1'b0,INSTRUCTION[23:22]};
RM=INSTRUCTION[18:16];
in_alu_sel2=(IN_MOD==3'b011)? 2'b01 : 2'b00;
in_alu_sel1=2'b00;/* number 1 */
PARAM1=1;
OUT_MOD=IN_MOD;
MEM_OR_IO=0;
/*in case IN_MOD=011 */
reg_read_port2_addr={1'b0,RM};
reg_write_addr={1'b0,RM};
ALU_OP=(INSTRUCTION[19:19]==1)?`ALU_OP_SUB_REVERSE:`ALU_OP_ADD;
if ( IN_MOD == 3'b011 )
next_state=`EXEC_WRITE_ENTRY;
else
next_state=`EXEC_MEMIO_READ;
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1111_0100_??? : begin
/* HLT - Halt */
/* 1 1 1 1 0 1 0 0 | */
opcode_size=0;
IN_MOD=3'b011;
HALT<=1;
ERROR<=`ERR_NO_ERROR;
MEM_OR_IO=0;
seq_addr_entry<=`UCODE_NO_INSTRUCTION;
next_state=`EXEC_WAIT;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b0011_110?_??? : begin
/* CMP - Compare Immediate with accumulator */
/* 0 0 1 1 1 1 0 W | DATA | DATA if W |*/
/* */
/* NOTE: 8086 doc doesn't show the third byte but the */
/* W flag and my assembler seem to disagree */
Wbit=INSTRUCTION[24:24];
opcode_size=0;
IN_MOD=3'b011;
in_alu_sel1=2'b00;
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,3'b000};
OUT_MOD=3'b100;
ALU_OP=`ALU_OP_SUB_REVERSE;
MEM_OR_IO=0;
if(Wbit==1)
PARAM_ACTION=`LOAD_16;
else begin
PARAM_ACTION=`LOAD_8;
//PARAM1[7:0]=INSTRUCTION[7:0]; TODO:needed?
end
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b0111_????_???:begin
/* Conditional relative jumps */
/* JE/JZ - Jump on Zero */
/* 0 1 1 1 0 1 0 0 | IP-INC8 |*/
/* JS - Jump on Sign */
/* 0 1 1 1 1 0 0 0 | IP-INC8 |*/
/* JNS -Jump on not Sign */
/* 0 1 1 1 1 0 0 1 | IP-INC8 |*/
/* .... */
Wbit=1;
opcode_size=0;
in_alu_sel1=2'b10;
in_alu_sel2=2'b00;
PARAM2={{8{INSTRUCTION[23:23]}},INSTRUCTION[23:16]};
ALU_OP=`ALU_OP_ADD_SIGNED_B;
MEM_OR_IO=0;
OUT_MOD=3'b101;
case(INSTRUCTION[27:25])
3'b000: begin
/* Jump on (not) Overflow */
if(FLAGS[11:11]==INSTRUCTION[24:24])
next_state=`EXEC_NEXT_INSTRUCTION;
else begin
next_state=`EXEC_WRITE_ENTRY;
end
`normal_instruction;
end
3'b010: begin
/* Jump on (not) Zero */
if(FLAGS[6:6]==INSTRUCTION[24:24])
next_state=`EXEC_NEXT_INSTRUCTION;
else
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
end
3'b100: begin
/* Jump on (not) Sign */
if(FLAGS[7:7]==INSTRUCTION[24:24])
next_state=`EXEC_NEXT_INSTRUCTION;
else
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
end
3'b101: begin
/* Jump on (not) Parity */
if(FLAGS[2:2]==INSTRUCTION[24:24])
next_state=`EXEC_NEXT_INSTRUCTION;
else
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
end
3'b001: begin
/* Jump on (not) Carry */
if(FLAGS[0:0]==INSTRUCTION[24:24])
next_state=`EXEC_NEXT_INSTRUCTION;
else
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
end
default:begin
`invalid_instruction; /*We don't support that condition*/
end
endcase
DEPENDS_ON_PREVIOUS<=1;
memio_address_select=0;
end
11'b1110_1011_???:begin
/* JMP - Unconditional jump direct within segment (short) */
/* | 1 1 1 0 1 0 1 1 | IP-INC-LO | */
opcode_size=0;
Wbit=1;
in_alu_sel1=2'b10;
in_alu_sel2=2'b00;
PARAM2={{8{INSTRUCTION[23:23]}},INSTRUCTION[23:16]};
ALU_OP=`ALU_OP_ADD_SIGNED_B;
OUT_MOD=3'b101;
MEM_OR_IO=0;
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1110_1000_???:begin
/* CALL - Direct call within segment */
/* 1 1 1 0 1 0 0 0 | IP-INC-LO | IP-INC-HI |*/
// Microcode instruction
opcode_size=0;
Wbit=1;
Sbit=1;
PARAM2=2; //subtract from sp
seq_addr_entry<=`UCODE_CALL_ENTRY;
`normal_microcoded
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1100_0011_???:begin
/* RET - Return from call within segment */
/* | 1 1 0 0 0 0 1 1 | */
// Microcode instruction
opcode_size=0;
Wbit=1;
Sbit=0;
PARAM1=2;
seq_addr_entry<=`UCODE_RET_ENTRY;
`normal_microcoded
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1010_101?_???:begin
/* STOS - Write byte/word to [DI] and increment accordingly */
/* | 1 0 1 0 1 0 1 W | */
opcode_size=0;
Wbit=INSTRUCTION[24:24];
Sbit=0;
RM=3'b101;
seq_addr_entry<=`UCODE_STOS_ENTRY;
`normal_microcoded
PARAM2=(Wbit==1)?2:1;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b0101_0???_???:begin
/* PUSH - SP-=2; [SP]=REG */
/* | 0 1 0 1 0 REG | */
opcode_size=0;
Wbit=1;
Sbit=0;
PARAM2=2;
reg_read_port2_addr={1'b1,INSTRUCTION[26:24]};
seq_addr_entry<=`UCODE_PUSH_ENTRY;
`normal_microcoded
memio_address_select=0;
DEPENDS_ON_PREVIOUS<=0;
end
11'b1111_011?_000:begin
/* TEST - Bitwise AND of immediate and registers/memory affecting only flags */
2023-02-24 10:08:01 +00:00
/* 1 1 1 1 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */
opcode_size=1;
Wbit=INSTRUCTION[24:24];
IN_MOD={1'b0,INSTRUCTION[23:22]};
RM={INSTRUCTION[18:16]};
MEM_OR_IO=0;
2023-02-24 10:08:01 +00:00
if(Wbit==1)begin
PARAM_ACTION=`LOAD_16;
2023-02-24 10:08:01 +00:00
end else begin
PARAM_ACTION=`LOAD_8;
2023-02-24 10:08:01 +00:00
end
in_alu_sel1=2'b00; /* PARAM1 */
ALU_OP=`ALU_OP_AND;
2023-02-24 10:08:01 +00:00
case(IN_MOD)
3'b011:begin
in_alu_sel2=2'b01;
2023-02-24 10:08:01 +00:00
reg_read_port2_addr={Wbit,RM};
next_state=`EXEC_WRITE_ENTRY;
2023-02-24 10:08:01 +00:00
end
default:begin
`invalid_instruction
next_state=`EXEC_MEMIO_READ;
2023-02-24 10:08:01 +00:00
end
endcase
OUT_MOD=3'b100;/*NULL*/
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
2023-02-24 10:08:01 +00:00
end
11'b1010_100?_???:begin
/* TEST - Bitwise AND of immediate and accumulator affecting only flags */
/* 1 0 1 0 1 0 0 W | DATA | DATA if W | */
opcode_size=0;
Wbit=INSTRUCTION[24:24];
IN_MOD=3'b011;
RM=3'b000;
MEM_OR_IO=0;
if(Wbit==1)begin
PARAM_ACTION=`LOAD_16;
end else begin
PARAM_ACTION=`LOAD_8;
end
next_state=`EXEC_WRITE_ENTRY;
in_alu_sel1=2'b00; /* PARAM1 */
ALU_OP=`ALU_OP_AND;
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,RM};
OUT_MOD=3'b100;/*NULL*/
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b0101_1???_???:begin
2023-02-24 11:31:15 +00:00
/* POP - REG=[SP]; SP+=2 */
/* | 0 1 0 1 1 REG | */
opcode_size=0;
Wbit=1;
Sbit=0;
PARAM1=2;
reg_write_addr={1'b1,INSTRUCTION[26:24]};
seq_addr_entry<=`UCODE_POP_ENTRY;
`normal_microcoded
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
2023-02-24 11:31:15 +00:00
end
11'b1111_1111_100:begin
/* JMP - Unconditional indirect within segment jump */
/* 1 1 1 1 1 1 1 1 | MOD 1 0 0 R/M | < DISP-LO > | < DISP-HI > */
opcode_size=1;
Wbit=1;
IN_MOD={1'b0,INSTRUCTION[23:22]};
RM=INSTRUCTION[18:16];
MEM_OR_IO=0;
in_alu_sel1=2'b11;
if (IN_MOD==3'b011)begin
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,RM};
next_state=`EXEC_WRITE_ENTRY;
end else begin
in_alu_sel2=2'b00;
next_state=`EXEC_MEMIO_READ;
end
ALU_OP=`ALU_OP_ADD;
OUT_MOD=3'b101;
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1100_011?_000:begin
2023-02-24 15:25:45 +00:00
/* MOV - Move immediate to register/memory */
/* 1 1 0 0 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */
Wbit=INSTRUCTION[24:24];
2023-02-24 15:25:45 +00:00
opcode_size=1;
in_alu_sel1=2'b00;
in_alu_sel2=2'b11;
MEM_OR_IO=0;
2023-02-24 15:25:45 +00:00
if(Wbit==1)begin
PARAM_ACTION=`LOAD_16;
2023-02-24 15:25:45 +00:00
end else begin
PARAM_ACTION=`LOAD_8;
2023-02-24 15:25:45 +00:00
end
OUT_MOD={1'b0,INSTRUCTION[23:22]};
2023-02-24 15:25:45 +00:00
IN_MOD=3'b011;
RM=INSTRUCTION[18:16];
`normal_instruction;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
next_state=`EXEC_WRITE_ENTRY;
end
11'b1100_1101_???:begin
/* INT - Execute interrupt handler */
/* 1 1 0 0 1 1 0 1 | DATA |*/
2023-03-21 14:51:39 +00:00
// [skipped] 1) push flags
// [skipped] 2) clear trap and interrupt enable flag
// [skipped] 3) push CS
// [skipped] 4) fetch CS from interrupt table
// 5) push ProgCount
// 6) fetch ProgCount from interrupt table
opcode_size=0;
Wbit=1;
Sbit=0;
PARAM2=2;
seq_addr_entry<=`UCODE_INT_ENTRY;
`normal_microcoded
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
end
11'b1110_011?_???:begin
/* OUT - Write AL or AX to a defined output port */
/* | 1 1 1 0 0 1 1 W | DATA 8 | */
memio_address_select=1;
Wbit=INSTRUCTION[24:24];
opcode_size=0;
in_alu_sel1=2'b00;
in_alu_sel2=2'b11;
reg_read_port1_addr={Wbit,3'b000};
PARAM_ACTION=`LOAD_8;
HALT <= 0;
PARAM1=0;
OUT_MOD={3'b000};
DEPENDS_ON_PREVIOUS<=0;
IN_MOD=3'b011;
next_state=`EXEC_WRITE_ENTRY;
`normal_instruction
MEM_OR_IO=1;
end
11'b1100_1111_???:begin
/* IRET - Return from interrupt */
/* | 1 1 0 0 1 1 1 1 | */
2023-03-21 14:51:39 +00:00
// Since we only push one thing on the stack
// on INT we can just reuse the code from RET
opcode_size=0;
Wbit=1;
Sbit=0;
PARAM1=2;
seq_addr_entry<=`UCODE_RET_ENTRY;
`normal_microcoded
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
2023-02-24 15:25:45 +00:00
end
11'b1000_000?_100,11'b1000_000?_001:begin
/* OR - Bitwise OR immediate and register/mem */
/* 1 0 0 0 0 0 0 W | MOD 0 0 1 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */
/* AND - Bitwise AND immediate and register/mem */
/* 1 0 0 0 0 0 0 W | MOD 1 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */
opcode_size=1;
Wbit=INSTRUCTION[24:24];
IN_MOD={1'b0,INSTRUCTION[23:22]};
RM={INSTRUCTION[18:16]};
MEM_OR_IO=0;
if(Wbit==1)begin
PARAM_ACTION=`LOAD_16;
end else begin
PARAM_ACTION=`LOAD_8;
end
in_alu_sel1=2'b00; /* PARAM1 */
case(INSTRUCTION[21:19])
3'b100: ALU_OP=`ALU_OP_AND;
3'b001: ALU_OP=`ALU_OP_OR;
default:begin end
endcase
case(IN_MOD)
3'b011:begin
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,RM};
reg_write_addr={Wbit,RM};
next_state=`EXEC_WRITE_ENTRY;
end
default:begin
`unimpl_addressing_mode
next_state=`EXEC_MEMIO_READ;
end
endcase
OUT_MOD=IN_MOD;
DEPENDS_ON_PREVIOUS<=0;
memio_address_select=0;
`normal_instruction;
end
11'b0000_00??_???,11'b0010_10??_???,11'b0011_10??_???:begin
/* CMP - Compare Register/memory and register */
/* 0 0 1 1 1 0 D W | MOD REG R/M | < DISP LO > | < DISP HI > | */
/* SUB - Reg/memory with register to either */
/* 0 0 1 0 1 0 D W | MOD REG R/M | < DISP LO > | < DISP HI > | */
/* ADD - Reg/memory with register to either */
/* 0 0 0 0 0 0 D W | MOD REG R/M | < DISP LO > | < DISP HI > | */
opcode_size=1;
Wbit=INSTRUCTION[24:24];
Sbit=0;
IN_MOD=3'b011;
RM=INSTRUCTION[18:16];
in_alu_sel1=2'b01;//constantly register
reg_read_port1_addr={Wbit,INSTRUCTION[21:19]};
if(IN_MOD==3'b011)begin
in_alu_sel2=2'b01;
reg_read_port2_addr={Wbit,RM};
reg_write_addr={Wbit,RM};
next_state=`EXEC_WRITE_ENTRY;
end else begin
in_alu_sel2=2'b00;
if(Wbit==1)begin
PARAM_ACTION=`LOAD_16;
end else begin
PARAM_ACTION=`LOAD_8;
end
end
MEM_OR_IO=0;
memio_address_select=0;
case (INSTRUCTION[29:26])
4'b0000: ALU_OP=`ALU_OP_ADD;
4'b1010: ALU_OP=`ALU_OP_SUB;
4'b1110: ALU_OP=`ALU_OP_SUB_REVERSE;
default: begin end
endcase
case (INSTRUCTION[29:26])
4'b0000: OUT_MOD={1'b0,INSTRUCTION[23:22]};
4'b1010: OUT_MOD={1'b0,INSTRUCTION[23:22]};
4'b1110: OUT_MOD=3'b100; /* NULL */
default: begin end
endcase
DEPENDS_ON_PREVIOUS<=0;
next_state=`EXEC_WRITE_ENTRY;
if(INSTRUCTION[25:25]==1'b0) begin
`normal_instruction;
end else begin
`unimpl_addressing_mode;
end
end
default:begin
`invalid_instruction
end
endcase
end else begin
/*Microcode output*/
//Sbit, Wbit, opcode_size and the others are still latched
//from when we ordered the switch to microcode
seq_addr_entry <= ucode_data[`UCODE_ADDR_BITS-1:0];
case(ucode_data[8:6])
3'b000: begin next_state=`EXEC_WRITE_ENTRY; set_params = 0; end
3'b001: begin next_state=`EXEC_WRITE_ENTRY; PARAM_ACTION=`LOAD_16;end
3'b010: begin next_state=`EXEC_WRITE_ENTRY; PARAM_ACTION=`LOAD_8;end
3'b011: begin next_state=`EXEC_MEMIO_READ;set_params = 0; end
3'b100: begin next_state=`EXEC_MEMIO_READ_SETADDR;set_params = 0; end
default: begin end /*impossible*/
endcase
if(ucode_data[36:36]==0) /*Set reg write address*/
reg_write_addr = ucode_data[12:9 ];
in_alu_sel1 = ucode_data[14:13];
in_alu_sel2 = ucode_data[16:15];
OUT_MOD = ucode_data[19:17];
/*1:1 map essentially but I want to keep the spec for these bits separate
* from the alu op select bits*/
case(ucode_data[22:20])
3'b000: ALU_OP=`ALU_OP_ADD;
3'b001: ALU_OP=`ALU_OP_SUB;
3'b010: ALU_OP=`ALU_OP_AND;
3'b011: ALU_OP=`ALU_OP_OR;
3'b100: ALU_OP=`ALU_OP_XOR;
3'b101: ALU_OP=`ALU_OP_ADD_SIGNED_B;
3'b110: ALU_OP=`ALU_OP_SUB_REVERSE;
3'b111: ALU_OP=`ALU_OP_SHIFT_LEFT;
default: begin end
endcase
if(ucode_data[34:34]==0) /* Set reg read port 1 address */
reg_read_port1_addr=ucode_data[26:23];
IN_MOD=ucode_data[29:27];
if(ucode_data[35:35]==0) /* Set reg read port 1 address */
reg_read_port2_addr=ucode_data[33:30];
if(ucode_data[37:37]==1) /* Overwrite Wbit */
Wbit=ucode_data[38:38];
memio_address_select=ucode_data[39:39];
MEM_OR_IO=0;
HALT <= 0;
ERROR <= 0; //TODO probably, right?
end
if(PARAM_ACTION==`LOAD_8)begin
if(opcode_size==0)begin
if({Sbit,Wbit}==2'b11)begin
/*signed "16bit" read*/
PARAM1 = {{8{INSTRUCTION[23:23]}},INSTRUCTION[23:16]};
end else begin
//PARAM1[7:0] = INSTRUCTION[23:16];
PARAM1 = {8'b0,INSTRUCTION[23:16]};
end
end else begin
if({Sbit,Wbit}==2'b11)begin
/*signed "16bit" read*/
PARAM1 = {{8{INSTRUCTION[15:15]}},INSTRUCTION[15:8]};
end else begin
//PARAM1[7:0] = INSTRUCTION[15:8];
PARAM1 = {8'b0,INSTRUCTION[15:8]};
end
end
case(IN_MOD)
3'b000,3'b001,3'b010: next_state = `EXEC_MEMIO_READ;
default: next_state = `EXEC_WRITE_ENTRY;
endcase
end else if (PARAM_ACTION == `LOAD_16) begin
if(opcode_size==0)begin
PARAM1[7:0] = INSTRUCTION[23:16];
PARAM1[15:8] = INSTRUCTION[15:8];
end else begin
PARAM1[15:8] = INSTRUCTION[7:0];
PARAM1[7:0] = INSTRUCTION[15:8];
end
case(IN_MOD)
3'b000,3'b001,3'b010: next_state = `EXEC_MEMIO_READ;
default: next_state = `EXEC_WRITE_ENTRY;
endcase
end
end
`undef invalid_instruction
endmodule
2023-06-01 01:13:55 +00:00
/* verilator lint_on BLKSEQ */
/* IN: {INSTRUCTION[31:24],INSTRUCTION[21:19]} */
/* OUT: number in bytes */
module InstrSize ( input [10:0] IN, output reg [2:0] VERDICT );
always @( IN ) begin
casez(IN)
11'b0000_010?_??? : VERDICT = 3'd2+{2'b0,IN[3:3]}; /* ADD - Add Immediate word/byte to accumulator */
11'b1000_00??_101 : VERDICT = 3'd3+{2'b0,(IN[4:3]==2'b01)}; /* SUB - Subtract immediate word/byte from register/memory */
11'b1000_00??_000 : VERDICT = 3'd3+{2'b0,(IN[4:3]==2'b01)}; /* ADD - Add Immediate word/byte to register/memory */
11'b1000_00??_111 : VERDICT = 3'd3+{2'b0,(IN[4:3]==2'b01)}; /* CMP - compare Immediate with register / memory */
11'b1011_????_??? : VERDICT = 3'd2+{2'b0,IN[6:6]}; /* MOV - Move Immediate byte to register */
11'b1000_10??_??? : VERDICT = 3'd2; /* MOV - Reg/Mem to/from register */
11'b0100_????_??? : VERDICT = 3'd1; /* DEC - Decrement Register | INC - Increment Register */
11'b1111_111?_00? : VERDICT = 3'd2; /* INC - Register/Memory | DEC - Register/Memory */
11'b1111_0100_??? : VERDICT = 3'd1; /* HLT - Halt */
11'b0011_110?_??? : VERDICT = 3'd2+{2'b0,IN[3:3]}; /* CMP - Compare Immediate with accumulator */
11'b0111_????_??? : VERDICT = 3'd2; /* Conditional relative jumps ( JE/JZ, JS/JNS ... ) */
11'b1110_1011_??? : VERDICT = 3'd2; /* JMP - Unconditional jump direct within segment (short) */
11'b1110_1000_??? : VERDICT = 3'd3; /* CALL - Direct call within segment */
11'b1100_0011_??? : VERDICT = 3'd1; /* RET - Return from call within segment */
11'b1010_101?_??? : VERDICT = 3'd1; /* STOS - Write byte/word to [DI] and increment accordingly */
11'b0101_0???_??? : VERDICT = 3'd1; /* PUSH - SP-=2; [SP]=REG */
11'b1111_011?_000 : VERDICT = 3'd3+{2'b0,IN[3:3]}; /* TEST - Bitwise AND affecting only flags */
11'b0101_1???_??? : VERDICT = 3'd1; /* POP - REG=[SP]; SP+=2 */
11'b1111_1111_100 : VERDICT = 3'd2; /* JMP - Unconditional indirect within segment jump */
11'b1100_011?_000 : VERDICT = 3'd3+{2'b0,IN[3:3]}; /* MOV - Move immediate to register/memory */
11'b1100_1101_??? : VERDICT = 3'd2; /* INT - execute interrupt handler */
11'b1110_011?_??? : VERDICT = 3'd2; /* OUT - write AL or AX to a defined output port */
11'b1100_1111_??? : VERDICT = 3'd1; /* IRET - Return from interrupt */
11'b1000_000?_100 : VERDICT = 3'd3+{2'b0,IN[3:3]}; /* AND - Bitwise AND immediate and register/mem */
11'b1000_000?_001 : VERDICT = 3'd3+{2'b0,IN[3:3]}; /* OR - Bitwise OR immediate and register/mem */
11'b1010_100?_??? : VERDICT = 3'd2+{2'b0,IN[3:3]}; /* TEST - Bitwise AND affecting only flags */
11'b0000_00??_??? : VERDICT = 3'd2; /* ADD - Reg/memory with register to either */
11'b0010_10??_??? : VERDICT = 3'd2; /* SUB - Reg/memory with register to either */
11'b0011_10??_??? : VERDICT = 3'd2; /* CMP - Compare Register/memory and register */
default: VERDICT = 3'd7;
endcase
end
endmodule
`ifdef INCLUDE_EARLY_CALC_CIRUIT
module Is1 ( input [7:0] IN, output reg VERDICT );
always @( IN ) begin
casez(IN)
8'b0100_???? : VERDICT = 1; /* DEC - Decrement Register | INC - Increment Register */
8'b1111_0100 : VERDICT = 1; /* HLT - Halt */
8'b1100_0011 : VERDICT = 1; /* RET - Return from call within segment */
8'b1010_101? : VERDICT = 1; /* STOS - Write byte/word to [DI] and increment accordingly */
8'b0101_0??? : VERDICT = 1; /* PUSH - SP-=2; [SP]=REG */
8'b0101_1??? : VERDICT = 1; /* POP - REG=[SP]; SP+=2 */
8'b1100_1111 : VERDICT = 1; /* IRET - Return from interrupt */
default:begin VERDICT = 0; end
endcase
end
endmodule
`endif
`undef unimpl_addressing_mode