9086/cpu/processor.v

674 lines
18 KiB
Coq
Raw Normal View History

/* processor.v - implementation of most functions of the 9086 processor
This file is part of the 9086 project.
Copyright (c) 2023 Efthymios Kritikos
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
`include "proc_state_def.v"
`include "alu_header.v"
`include "config.v"
2023-02-08 09:18:00 +00:00
module mux4 (in1,in2,in3,in4, sel,out);
input [0:1] sel;
parameter WIDTH=16;
input [WIDTH-1:0] in1,in2,in3,in4;
output [WIDTH-1:0] out;
assign out = (sel == 'b00) ? in1 :
(sel == 'b01) ? in2 :
(sel == 'b10) ? in3 :
in4;
endmodule
module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write, output reg HALT,output reg ERROR);
2023-02-14 13:13:40 +00:00
/*if we don't read, output the register to have the bus stable by the write falling edge*/
reg [15:0] data_bus_output_register;
assign external_data_bus=read?data_bus_output_register:'hz;
/*** Global Definitions ***/
// State
2023-02-14 13:13:40 +00:00
reg [`PROC_STATE_BITS-1:0] state;
2023-02-08 12:07:42 +00:00
// Registers
2023-02-08 12:07:42 +00:00
reg [19:0] ProgCount;
reg [15:0] CIR;
reg [15:0] PARAM1;
reg [15:0] PARAM2;
reg unaligned_access;
2023-02-14 13:13:40 +00:00
reg [1:0]MOD;
reg [2:0]RM;
reg Wbit;
reg [15:0]FLAGS;
/* . . . . O D I T S Z . A . P . C */
// C - Carry flag : carry out or borrow into the high order bit (8bit/16bit)
//
// P - Parity flag : is set if result has even parity
//
// A - Auxiliary flag : carry out from the low nibble to the high nibble or
// an equiv borrow. Used by decimal arithmetic instructions
//
// Z - Zero flag : Set when result of Operation is zero
//
// S - Sign flag : set if the high order bit of the result is 1. aka the sign
// of the result
//
// T - Trap flag : Set the CPU into single step mode where it generates an
// interrupt after each instruction
//
// I - Interrupt flag : 0: interrupts are masked
//
// D - Direction flag : 1: string instructions decrement 0: they increment
//
// O - Overflow flag : set on arithmetic overflow
2023-02-14 13:13:40 +00:00
reg [15:0] BYTE_WRITE_TEMP_REG;//we read 16bits here if we want to change just 8 and leave the rest
2023-02-08 12:07:42 +00:00
// Execution units
reg [1:0] in1_sel;
reg [1:0] in2_sel;
2023-02-13 10:36:37 +00:00
/* out_sel : { EXTRA_FUNCTIONS_BIT[0:0], MOD_OR_EXTRA_FUNCTION[1:0] } */
reg [2:0] out_sel;
/*** RESET LOGIC ***/
2023-02-08 12:07:42 +00:00
always @(negedge reset) begin
if (reset==0) begin
@(posedge clock);
state=`PROC_HALT_STATE;
2023-02-08 12:07:42 +00:00
ProgCount=0;//TODO: Reset Vector
HALT=0;
reg_write_we=1;
reg_read_oe=1;
unaligned_access=0;
ALU_1OE=1;
@(posedge reset)
@(negedge clock);
state=`PROC_IF_STATE_ENTRY;
2023-02-14 13:13:40 +00:00
MOD=2'b11;
ERROR=0;
2023-02-08 12:07:42 +00:00
end
end
/*** ALU and EXEC stage logic ***/
//Architectural Register file
reg [3:0] reg_write_addr;
reg [15:0] reg_write_data;
reg reg_write_we;
reg [3:0] reg_read_addr;
reg [15:0] reg_read_data;
reg reg_read_oe;
register_file register_file(reg_write_addr,reg_write_data,reg_write_we,reg_read_addr,reg_read_data,reg_read_oe);
//ALU
mux4 #(.WIDTH(16)) MUX16_1A(
PARAM1,
reg_read_data,
{ProgCount[14:0],unaligned_access}, /*THAT'S NOT ALL OF ADDR Bus, is that irrelevant with segmentation??*/
16'b0,
in1_sel,
ALU_1A);
mux4 #(.WIDTH(16)) MUX16_1B(
PARAM2,
reg_read_data,
{ProgCount[14:0],unaligned_access}, /*THAT'S NOT ALL OF ADDR Bus, is that irrelevant with segmentation??*/
16'b0,
in2_sel,
ALU_1B);
wire [15:0] ALU_1A;
wire [15:0] ALU_1B;
wire [15:0] ALU_1O;
reg [`ALU_OP_BITS-1:0]ALU_1OP;
reg ALU_1OE;
wire [7:0] ALU_FLAGS;
ALU ALU(ALU_1A,ALU_1B,ALU_1OE,ALU_1O,ALU_1OP,ALU_FLAGS,Wbit);
/*** Processor stages ***/
2023-02-10 14:39:34 +00:00
2023-02-14 13:13:40 +00:00
`define invalid_instruction state=`PROC_IF_STATE_ENTRY;ERROR=1;MOD=2'b11;
`define start_aligning_instruction if(unaligned_access==0)begin ProgCount=ProgCount+1; external_address_bus <= ProgCount; end /*we normally don't advance PC in case of singly byte unaligning instructions leaving us with two instructions in one read so do that here*/
`define start_unaligning_instruction unaligned_access=~unaligned_access;
2023-02-10 14:39:34 +00:00
always @(negedge clock) begin
case(state)
`PROC_IF_WRITE_CIR:begin
if(unaligned_access)begin
CIR[15:8] <= external_data_bus[7:0];
ProgCount=ProgCount+1;
state=`PROC_IF_STATE_EXTRA_FETCH_SET;
end else begin
CIR <= external_data_bus;
state=`PROC_DE_STATE_ENTRY;
end
end
`PROC_IF_STATE_EXTRA_FETCH:begin
CIR[7:0] <= external_data_bus[15:8];
state=`PROC_DE_STATE_ENTRY;
end
`PROC_EX_STATE_EXIT:begin
2023-02-13 10:36:37 +00:00
case(out_sel)
2023-02-14 13:13:40 +00:00
3'b000,
3'b001,
3'b010 : begin
case (RM) /* Duplicate code with write... */
3'b000:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b001:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b010:begin
/*[BP]+[SI]*/
`invalid_instruction
end
3'b011:begin
/*[BP]+[DI]*/
`invalid_instruction
end
3'b100:begin
/*[SI]*/
reg_read_addr=4'b1110;
reg_read_oe=0;
state=`PROC_MEMIO_WRITE;
end
3'b101:begin
/*[DI]*/
reg_read_addr=4'b1111;
reg_read_oe=0;
state=`PROC_MEMIO_WRITE;
end
3'b110:begin
/*d16 */
`invalid_instruction
end
3'b111:begin
/*[BX]*/
reg_read_addr=4'b1011;
reg_read_oe=0;
state=`PROC_MEMIO_WRITE;
end
endcase
end
2023-02-13 10:36:37 +00:00
3'b011:begin
reg_write_we=0;
state=`PROC_IF_STATE_ENTRY;
end
3'b101:begin
ProgCount=ALU_1O[15:1];
unaligned_access=ALU_1O[0:0];
state=`PROC_IF_STATE_ENTRY;
end
3'b100:begin
state=`PROC_IF_STATE_ENTRY;
end
default:begin
`invalid_instruction
end
endcase
end
`PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin
external_address_bus = ProgCount;
state=`PROC_DE_LOAD_16_EXTRA_FETCH;
end
2023-02-14 13:13:40 +00:00
`PROC_MEMIO_READ_SETADDR:begin
external_address_bus = {1'b0,reg_read_data[15:1]};
state=reg_read_data[0:0]?`PROC_MEMIO_GET_UNALIGNED_DATA:`PROC_MEMIO_GET_ALIGNED_DATA;
end
2023-02-14 13:13:40 +00:00
`PROC_MEMIO_PUT_BYTE:begin
BYTE_WRITE_TEMP_REG=external_data_bus;
state=`PROC_MEMIO_PUT_BYTE_STOP_READ;
end
`PROC_MEMIO_PUT_BYTE_WRITE:begin
write=0;
state=`PROC_IF_STATE_ENTRY;
end
endcase
2023-02-08 12:07:42 +00:00
end
always @(posedge clock) begin
case(state)
`PROC_HALT_STATE:begin
end
`PROC_IF_STATE_ENTRY:begin
`ifdef DEBUG_PC_ADDRESS
/* Weird (possible bug) where even though the
* testbench stop the clock after ERROR gets
* raised the logic for the rising edge still
* gets triggered printing this debug message. */
if(ERROR!=1)
$display("Fetched instruction at %04x",{ProgCount[18:0],unaligned_access});
`endif
external_address_bus <= ProgCount;
read <= 0;
write <= 1;
reg_read_oe=1;
reg_write_we=1;
ALU_1OE=1;
state=`PROC_IF_WRITE_CIR;
end
`PROC_IF_STATE_EXTRA_FETCH_SET:begin
external_address_bus <= ProgCount;
state=`PROC_IF_STATE_EXTRA_FETCH;
end
/* 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 */
/* AFTER THE IF STAGE WE HAVE THE FIRST BYTE OF THE
* INSTRUCTION AND THE ONE FOLLOWING, ALIGNED CORRECTLY TO
* CIR */
`PROC_DE_STATE_ENTRY:begin
case(CIR[15:10])
6'b000001 : begin
/* ADD, ... */
if ( CIR[9:9] == 0 )begin
/* Add Immediate word/byte to accumulator */
/* 0 0 0 0 0 1 0 W | DATA | DATA if W |*/
Wbit=CIR[8:8];
if(Wbit)
`start_unaligning_instruction
else
`start_aligning_instruction
2023-02-14 13:13:40 +00:00
MOD=2'b11;
in1_sel=2'b00;
in2_sel=2'b01;
2023-02-13 10:36:37 +00:00
out_sel=3'b011;
reg_read_addr={CIR[8:8],3'b000};
reg_write_addr={CIR[8:8],3'b000};
reg_read_oe=0;
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
if(CIR[8:8]==1)
state=`PROC_DE_LOAD_16_PARAM;
else begin
PARAM1[7:0]=CIR[7:0];
state=`PROC_EX_STATE_ENTRY;
end
end else begin
`invalid_instruction
end
end
6'b100000 : begin
/* ADD, ADC, SUB, SBB, CMP , AND, ... */
case (CIR[5:3])
3'b000 : begin
/* Add Immediate word/byte to register/memory */
/* 1 0 0 0 0 0 S W | MOD 0 0 0 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */
`start_aligning_instruction
Wbit=CIR[8:8];
2023-02-14 13:13:40 +00:00
MOD=2'b11;
in1_sel=2'b00;
in2_sel=2'b01;
2023-02-13 10:36:37 +00:00
out_sel={1'b0,CIR[7:6]};
reg_read_addr={CIR[8:8],CIR[2:0]};
reg_write_addr={CIR[8:8],CIR[2:0]};
reg_read_oe=0;
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
state=`PROC_DE_LOAD_16_PARAM;
if(CIR[8:8]==1)
state=`PROC_DE_LOAD_16_PARAM;
else begin
`invalid_instruction /*do 8bit loads*/
end
end
default:begin
`invalid_instruction
end
endcase
end
6'b101100,
6'b101101:begin
/* MOV - Move Immediate byte to register */
/* 1 0 1 1 W REG | DATA | DATA if W |*/
Wbit=CIR[11:11];
if(Wbit)
`start_unaligning_instruction
else
`start_aligning_instruction
2023-02-14 13:13:40 +00:00
MOD=2'b11;
in1_sel=2'b00;
in2_sel=2'b00;
2023-02-13 10:36:37 +00:00
out_sel=3'b011;
reg_write_addr={1'b0,CIR[10:8]};
PARAM1[7:0]=CIR[7:0];
PARAM2=0;
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
state=`PROC_EX_STATE_ENTRY;
end
6'b101110,
6'b101111 : begin
/*MOV - Move Immediate word to register*/
Wbit=CIR[11:11];
if(Wbit)
`start_unaligning_instruction
else
`start_aligning_instruction
2023-02-14 13:13:40 +00:00
MOD=2'b11;
in1_sel=2'b00;
in2_sel=2'b00;
2023-02-13 10:36:37 +00:00
out_sel=3'b011;
reg_write_addr={1'b1,CIR[10:8]};
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
PARAM2=0;
state=`PROC_DE_LOAD_16_PARAM;
end
6'b100010 : begin
/* MOV - Reg/Mem to/from register */
/* 1 0 0 0 1 0 D W | MOD REG REG | < DISP LO > | < DISP HI > |*/
`start_aligning_instruction
2023-02-14 13:13:40 +00:00
MOD=CIR[7:6];
RM=CIR[2:0];
Wbit=CIR[8:8];
if(CIR[9:9] == 1)begin
/* to reg */
2023-02-14 13:13:40 +00:00
MOD=CIR[7:6];
if(MOD==2'b11)begin
in1_sel=2'b01;
reg_read_addr=CIR[2:0];
end else begin
in1_sel=2'b00;
end
in2_sel=2'b00;
2023-02-13 10:36:37 +00:00
out_sel=3'b011;
reg_write_addr={CIR[8:8],CIR[5:3]};
end else begin
`invalid_instruction
end
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
PARAM2=0;
state=`PROC_DE_LOAD_16_PARAM;
2023-02-14 13:13:40 +00:00
if ( MOD == 2'b11 )
state=`PROC_EX_STATE_ENTRY;
else
state=`RPOC_MEMIO_READ;
end
6'b010000,//INC
6'b010001,//INC
6'b010010,//DEC
6'b010011:begin//DEC
/* DEC - Decrement Register */
/* | 0 1 0 0 1 REG | */
/* INC - Increment Register */
/* | 0 1 0 0 0 REG | */
`start_unaligning_instruction
Wbit=1;
in1_sel=2'b01;
in2_sel=2'b00;
2023-02-13 10:36:37 +00:00
out_sel=3'b011;
2023-02-14 13:13:40 +00:00
MOD=2'b11;
PARAM2=1;
reg_read_addr={1'b1,CIR[10:8]};
reg_write_addr={1'b1,CIR[10:8]};
reg_read_oe=0;
ALU_1OE=0;
if(CIR[11:11]==0)
ALU_1OP=`ALU_OP_ADD;
else
ALU_1OP=`ALU_OP_SUB;
state=`PROC_EX_STATE_ENTRY;
end
6'b111111 : begin
/* INC */
if (CIR[9:9] == 1 ) begin
case (CIR[5:3])
3'b000 :begin
/* INC - Register/Memory */
/* 1 1 1 1 1 1 1 W | MOD 0 0 0 R/M | < DISP LO> | < DISP HI> */
`start_aligning_instruction
Wbit=CIR[8:8];
2023-02-14 13:13:40 +00:00
MOD=CIR[7:6];
RM=CIR[2:0];
in1_sel=(MOD==2'b11)? 2'b01 : 2'b00;
in2_sel=2'b00;/* number 1 */
out_sel={1'b0,MOD};
PARAM2=1;
/*in case MOD=11 */
reg_read_addr={1'b0,RM};
reg_write_addr={1'b0,RM};
reg_read_oe=0;
2023-02-14 13:13:40 +00:00
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
if ( CIR[7:6] == 2'b11 )
state=`PROC_EX_STATE_ENTRY;
else
state=`RPOC_MEMIO_READ;
end
default:begin
`invalid_instruction
end
endcase
end else begin
`invalid_instruction
end
end
6'b111101 : begin
/*HLT, CMC, TEST, NOT, NEG, MUL, IMUL, .... */
case (CIR[9:8])
2'b00:begin
/* HLT - Halt */
/* 1 1 1 1 0 1 0 0 | */
`start_unaligning_instruction
2023-02-14 13:13:40 +00:00
MOD=2'b11;
HALT=1;
state=`PROC_HALT_STATE;
end
default:begin
`invalid_instruction;
end
endcase
end
6'b001111 : begin
if ( CIR[9:9] == 0 ) begin
/* CMP - Compare Immediate with accumulator */
/* 0 0 1 1 1 1 0 W | DATA | DATA if W |*/
/* */
/* NOTE: 8086 doc doesn't show the third byte but the */
/* W flag and my assembler seem to disagree */
Wbit=CIR[8:8];
if(Wbit)
`start_unaligning_instruction
else
`start_aligning_instruction
2023-02-14 13:13:40 +00:00
MOD=2'b11;
in1_sel=2'b00;
in2_sel=2'b01;
reg_read_addr={CIR[8:8],3'b000};
reg_read_oe=0;
2023-02-13 10:36:37 +00:00
out_sel=3'b100;
ALU_1OE=0;
ALU_1OP=`ALU_OP_SUB;
if(CIR[8:8]==1)
state=`PROC_DE_LOAD_16_PARAM;
else begin
PARAM1[7:0]=CIR[7:0];
state=`PROC_EX_STATE_ENTRY;
end
end else begin
`invalid_instruction
end
end
2023-02-13 10:36:37 +00:00
6'b011100,
6'b011101,
6'b011110,
6'b011111:begin
/* Conditional relative jumps */
/* Jump on Zero */
/* 0 1 1 1 0 1 0 0 | IP-INC8 |*/
/* Jump on Sign */
/* 0 1 1 1 1 0 0 0 | IP-INC8 |*/
/* Jump on not Sign */
/* 0 1 1 1 1 0 0 1 | IP-INC8 |*/
/* .... */
`start_aligning_instruction
Wbit=1;
in1_sel=2'b10;
in2_sel=2'b00;
PARAM2={8'b00000000,CIR[7:0]};
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
out_sel=3'b101;
if(CIR[7:7]==1) begin
`invalid_instruction; // We don't do singed add 8bit to unsigned 16bit
end else begin
case(CIR[11:9])
4'b000: begin
/* Jump on (not) Overflow */
if(FLAGS[11:11]==CIR[8:8])
state=`PROC_IF_STATE_ENTRY;
else begin
state=`PROC_EX_STATE_ENTRY;
end
end
4'b010: begin
/* Jump on (not) Zero */
if(FLAGS[6:6]==CIR[8:8])
state=`PROC_IF_STATE_ENTRY;
else
state=`PROC_EX_STATE_ENTRY;
end
4'b100: begin
/* Jump on (not) Sign */
if(FLAGS[7:7]==CIR[8:8])
state=`PROC_IF_STATE_ENTRY;
else
state=`PROC_EX_STATE_ENTRY;
end
4'b101: begin
/* Jump on (not) Parity */
if(FLAGS[2:2]==CIR[8:8])
state=`PROC_IF_STATE_ENTRY;
else
state=`PROC_EX_STATE_ENTRY;
end
default:begin
`invalid_instruction; /*We don't support that condition*/
end
endcase
end
end
default:begin
`invalid_instruction
end
endcase
end
`PROC_DE_LOAD_16_PARAM:begin
if(unaligned_access==1)begin
PARAM1[7:0] = external_data_bus[7:0];
ProgCount=ProgCount+1;
state=`PROC_DE_LOAD_16_EXTRA_FETCH_SET;
end else begin
PARAM1[7:0] = external_data_bus[15:8];
PARAM1[15:8] = external_data_bus[7:0];
ProgCount=ProgCount+1;
state=`PROC_EX_STATE_ENTRY;
end
end
`PROC_DE_LOAD_16_EXTRA_FETCH:begin
PARAM1[15:8] = external_data_bus[15:8];
state=`PROC_EX_STATE_ENTRY;
end
`RPOC_MEMIO_READ:begin
/*Decode MOD R/M, read the data and place it to PARAM1*/
2023-02-14 13:13:40 +00:00
case (RM)
3'b000:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b001:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b010:begin
/*[BP]+[SI]*/
`invalid_instruction
end
3'b011:begin
/*[BP]+[DI]*/
`invalid_instruction
end
3'b100:begin
/*[SI]*/
reg_read_addr=4'b1110;
reg_read_oe=0;
2023-02-14 13:13:40 +00:00
state=`PROC_MEMIO_READ_SETADDR;
end
3'b101:begin
/*[DI]*/
reg_read_addr=4'b1111;
reg_read_oe=0;
2023-02-14 13:13:40 +00:00
state=`PROC_MEMIO_READ_SETADDR;
end
3'b110:begin
/*d16 */
`invalid_instruction
end
3'b111:begin
/*[BX]*/
reg_read_addr=4'b1011;
reg_read_oe=0;
2023-02-14 13:13:40 +00:00
state=`PROC_MEMIO_READ_SETADDR;
end
endcase
2023-02-14 13:13:40 +00:00
if(MOD!=2'b00)begin
/*Actually check if 01 and add the 8bits or if 10 add the 16bits ....*/
`invalid_instruction;
2023-02-13 10:36:37 +00:00
end
2023-02-13 10:36:37 +00:00
end
`PROC_MEMIO_GET_ALIGNED_DATA:begin
PARAM1=(Wbit==1)? external_data_bus : {8'b00000000,external_data_bus[15:8]} ;
state=`PROC_EX_STATE_ENTRY;
end
`PROC_MEMIO_GET_UNALIGNED_DATA:begin
if(Wbit==1) begin
`invalid_instruction //easy to implement, get the other byte from the next address
end else begin
PARAM1={8'b00000000,external_data_bus[7:0]};
state=`PROC_EX_STATE_ENTRY;
end
end
`PROC_EX_STATE_ENTRY:begin
reg_write_data=ALU_1O;
FLAGS[7:0] = ALU_FLAGS[7:0];
state=`PROC_EX_STATE_EXIT;
end
2023-02-14 13:13:40 +00:00
`PROC_MEMIO_WRITE:begin
external_address_bus = {1'b0,reg_read_data[15:1]};
state = (Wbit==0) ? `PROC_MEMIO_PUT_BYTE : (reg_read_data[0:0]?`PROC_MEMIO_PUT_UNALIGNED_DATA:`PROC_MEMIO_PUT_ALIGNED_DATA) ;
end
`PROC_MEMIO_PUT_BYTE_STOP_READ:begin
read=1;
state=`PROC_MEMIO_PUT_BYTE_WRITE;
if(reg_read_data[0:0]==0)
data_bus_output_register={ALU_1O[7:0],BYTE_WRITE_TEMP_REG[7:0]};
else
data_bus_output_register={BYTE_WRITE_TEMP_REG[15:8],ALU_1O[7:0]};
end
2023-02-13 10:36:37 +00:00
endcase
2023-02-08 12:07:42 +00:00
end
2023-02-08 09:18:00 +00:00
2023-02-08 09:18:00 +00:00
endmodule