9086/system/processor.v

619 lines
17 KiB
Verilog

/* processor.v - implementation of most functions of the 9086 processor
This file is part of the 9086 project.
Copyright (c) 2023 Efthymios Kritikos
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
`include "proc_state_def.v"
`include "alu_header.v"
`include "config.v"
`include "ucode_header.v"
//HALT: active high
//ERROR: active high
//IOMEM: 1=IO 0=MEM
//write: active low
//read: active low
//reset: active low
module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write,output reg BHE,output reg IOMEM, output reg HALT,output reg ERROR);
/*if we don't read, output the register to have the bus stable by the write falling edge*/
reg [15:0] data_bus_output_register;
assign external_data_bus=read?data_bus_output_register:16'hz;
/*** Global Definitions ***/
reg [`PROC_STATE_BITS-1:0] state;
/*############ Decoder ########################################################## */
wire Wbit, Sbit, opcode_size;
wire [`PROC_STATE_BITS-1:0] next_state;
wire [2:0]RM;
wire [15:0]DE_PARAM1;// Input param1 form decoder to alu
wire [15:0]DE_PARAM2;
wire DE_ERROR,DE_HALT;
wire [3:0]DE_reg_read_port1_addr,DE_reg_write_addr,DE_reg_read_port2_addr;
wire [11:0]DE_REGISTER_CONTROL;
wire [2:0]INSTRUCTION_INFO;
wire [1:0]DECODER_SIGNALS;
wire [`UCODE_ADDR_BITS-1:0] ucode_seq_addr_entry;
reg SIMPLE_MICRO; /* output simple decodings (=0) or microcode data (=1) */
wire [2:0] DE_instruction_size;
reg instruction_size_init;
wire [2:0] instruction_size;
assign instruction_size = instruction_size_init ? 3'b010 : DE_instruction_size;
wire memio_address_select;
decoder decoder(
.CIR(CIR),
.FLAGS(FLAGS),
.INSTRUCTION_INFO(INSTRUCTION_INFO),
.DECODER_SIGNALS(DECODER_SIGNALS),
.next_state(next_state),
.IN_MOD(IN_MOD),
.RM(RM),
.PARAM1(DE_PARAM1),
.PARAM2(DE_PARAM2),
.in_alu1_sel1(in_alu1_sel1),
.in_alu1_sel2(in_alu1_sel2),
.OUT_MOD(OUT_MOD),
.REGISTER_FILE_CONTROL(DE_REGISTER_CONTROL),
.ALU_1OP(ALU_1OP),
.seq_addr_entry(ucode_seq_addr_entry),
.SIMPLE_MICRO(SIMPLE_MICRO),
.seq_addr_input(ucode_seq_addr),
.instruction_size(DE_instruction_size),
.memio_address_select(memio_address_select)
);
assign Wbit=INSTRUCTION_INFO[2:2];
assign Sbit=INSTRUCTION_INFO[1:1];
assign opcode_size=INSTRUCTION_INFO[0:0];
assign DE_reg_write_addr=DE_REGISTER_CONTROL[11:8];
assign DE_reg_read_port1_addr=DE_REGISTER_CONTROL[7:4];
assign DE_reg_read_port2_addr=DE_REGISTER_CONTROL[3:0];
assign DE_HALT=DECODER_SIGNALS[0:0];
assign DE_ERROR=DECODER_SIGNALS[1:1];
reg [`UCODE_ADDR_BITS-1:0] ucode_seq_addr;
/*############ REGISTERS ########################################################## */
reg [15:0] CIR;
reg [15:0] PARAM1;
reg [15:0] PARAM2;
// verilator lint_off UNDRIVEN
reg [15:0] FLAGS;
// verilator lint_on UNDRIVEN
//Architectural Register file
reg [3:0] reg_write_addr;
wire [15:0] reg_write_data;
reg reg_write_we;
reg [3:0] reg_read_port1_addr;
reg [15:0] reg_read_port1_data;
reg [3:0] reg_read_port2_addr;
reg [15:0] reg_read_port2_data;
reg [1:0] reg_write_in_sel;
mux4 #(.WIDTH(16)) REG_FILE_WRITE_IN_MUX(
ALU_1O,
16'hz,
16'hz,
16'hz,
reg_write_in_sel,
reg_write_data);
register_file register_file(
.write_port1_addr(reg_write_addr),
.write_port1_data(reg_write_data),
.write_port1_we(reg_write_we),
.read_port1_addr(reg_read_port1_addr),
.read_port1_data(reg_read_port1_data),
.read_port2_addr(reg_read_port2_addr),
.read_port2_data(reg_read_port2_data)
);
reg [15:0] ProgCount;
// verilator lint_off UNUSEDSIGNAL
wire [15:0] ProgCount_next_opcode;
wire [15:0] ProgCount_arg;
assign ProgCount_next_opcode=ProgCount+{13'b0,instruction_size};
assign ProgCount_arg=ProgCount+{15'b0,opcode_size}+16'd1;
// verilator lint_on UNUSEDSIGNAL
/*############ ALU / Execution units ########################################################## */
// ALU 1
reg [1:0] in_alu1_sel1;
reg [1:0] in_alu1_sel2;
/* OUT_MOD : { EXTRA_FUNCTIONS_BIT[0:0], MOD_OR_EXTRA_FUNCTION[1:0] } */
reg [2:0] IN_MOD;
reg [2:0] OUT_MOD;
mux4 #(.WIDTH(16)) MUX16_1A(
/*0*/ PARAM1,
/*1*/ reg_read_port1_data,
/*2*/ ProgCount[15:0],
/*3*/ 16'd0, /*0 Constant*/
in_alu1_sel1,
ALU_1A);
mux4 #(.WIDTH(16)) MUX16_1B(
/*0*/ PARAM2,
/*1*/ reg_read_port2_data,
/*2*/ ProgCount[15:0],
/*3*/ 16'd0, /*0 Constant*/
in_alu1_sel2,
ALU_1B);
wire [15:0] ALU_1A;
wire [15:0] ALU_1B;
wire [15:0] ALU_1O;
reg [`ALU_OP_BITS-1:0]ALU_1OP;
wire [7:0] ALU_1FLAGS;
ALU ALU1(
.A(ALU_1A),
.B(ALU_1B),
.OUT(ALU_1O),
.op(ALU_1OP),
.FLAGS(ALU_1FLAGS),
.Wbit(Wbit)
);
/*############ Processor state machine ########################################################## */
/*** RESET LOGIC ***/
/* verilator lint_off MULTIDRIVEN */
always @(negedge reset) begin
state <= `PROC_HALT_STATE; //TODO: race condition ??
end
always @(posedge reset) begin
state <= `PROC_RESET;
end
/* verilator lint_on MULTIDRIVEN */
/*** Processor stages ***/
`define invalid_instruction state <= `PROC_IF_STATE_ENTRY;ERROR <= 1;
always @(posedge clock) begin
case(state)
`PROC_RESET:begin
ucode_seq_addr <= `UCODE_NO_INSTRUCTION;
ProgCount <= 'hFFF0;//TODO: Implement Segmentation and set to zero
HALT <= 0;
ERROR <= 0;
IOMEM <= 0;
SIMPLE_MICRO <= 0;
reg_write_we <= 1;
instruction_size_init <= 1;
state <= `PROC_IF_STATE_ENTRY;
end
`PROC_HALT_STATE:begin
end
`PROC_IF_STATE_ENTRY:begin
`ifdef DEBUG_PC_ADDRESS
/* Weird (possible bug) where even though the
* testbench stop the clock after ERROR gets
* raised the logic for the rising edge still
* gets triggered printing this debug message. */
if(ERROR!=1)begin
if(instruction_size==1)
$display("Fetched instruction at %0x",ProgCount - 1);
else
$display("Fetched instruction at %0x",ProgCount - 0);
end
`endif
BHE <= 0;
external_address_bus <= {4'b0,ProgCount};
read <= 0;
write <= 1;
reg_write_we <= 1;
state <= `PROC_IF_WRITE_CIR;
reg_write_in_sel <= 2'b00;
end
`PROC_IF_WRITE_CIR:begin
/*I built the entire decode stage with CIR
* being big endian so just convert it here*/
if(instruction_size==1)begin
/*Half on CIR half on this address */
state <= `PROC_DE_STATE_ENTRY;
if(ProgCount[0:0]==1)begin
CIR <= {CIR[7:0],external_data_bus[15:8]};
end else begin
CIR <= {CIR[7:0],external_data_bus[7:0]};
end
ProgCount <= ProgCount+1;
end else begin
if(ProgCount[0:0]==1)begin
/* Half on this address half on the next*/
ProgCount <= ProgCount+1;
CIR[15:8] <= external_data_bus[15:8];
state <= `PROC_IF_STATE_EXTRA_FETCH_SET;
end else begin
/* Both on this address! */
ProgCount <= ProgCount+2;
CIR <= {external_data_bus[7:0],external_data_bus[15:8]};
state <= `PROC_DE_STATE_ENTRY;
end
end
end
`PROC_IF_STATE_EXTRA_FETCH_SET:begin
external_address_bus <= {4'b0,ProgCount};
BHE <= 0;
state <= `PROC_IF_STATE_EXTRA_FETCH;
end
`PROC_IF_STATE_EXTRA_FETCH:begin
CIR[7:0] <= external_data_bus[7:0];
ProgCount <= ProgCount+1;
state <= `PROC_DE_STATE_ENTRY;
end
`PROC_DE_STATE_ENTRY:begin
external_address_bus <= {4'b0,ProgCount};
if(SIMPLE_MICRO==0)begin
/*This flag is set at reset and jump because
* at IF we need to know the size of the
* previous instruction (specifically if it was
* a single byte and the value would be
* incorrect in both cases. So when it gets
* set reset it only at the start of the next
* 8086 instruction */
instruction_size_init <= 0;
/* We cannot set these directly within
* microcode so don't overwrite useful values
* each time the next microcode is executed.
* Note this still allows to set initial values
* at the start of the microcode */
PARAM1 <= DE_PARAM1;
PARAM2 <= DE_PARAM2;
end
ERROR <= DE_ERROR;
HALT <= DE_HALT;
reg_read_port1_addr <= DE_reg_read_port1_addr;
reg_read_port2_addr <= DE_reg_read_port2_addr;
reg_write_addr <= DE_reg_write_addr;
if ( (ucode_seq_addr==`UCODE_NO_INSTRUCTION) && (ucode_seq_addr_entry!=`UCODE_NO_INSTRUCTION) )begin
/*switch to microcode decoding*/
ucode_seq_addr <= ucode_seq_addr_entry;
SIMPLE_MICRO <= 1;
/*keep state the same and rerun decode this time with all the data from the microcode rom*/
end else begin
state <= next_state;
end
end
`PROC_DE_LOAD_REG_TO_PARAM:begin
PARAM2<=reg_read_port2_data;
case(IN_MOD)
3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ;
default: state <= `PROC_EX_STATE_ENTRY;
endcase
end
`PROC_DE_LOAD_8_PARAM:begin
if(opcode_size==0)begin
if({Sbit,Wbit}==2'b11)begin
/*signed "16bit" read*/
PARAM1 <= {{8{CIR[7:7]}},CIR[7:0]};
end else begin
PARAM1[7:0] <= CIR[7:0];
end
case(IN_MOD)
3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ;
default: state <= `PROC_EX_STATE_ENTRY;
endcase
end else begin
if(ProgCount[0:0]==1)begin
if({Sbit,Wbit}==2'b11)begin
/*signed "16bit" read*/
PARAM1 <= {{8{external_data_bus[15:15]}},external_data_bus[15:8]};
end else begin
PARAM1[7:0] <= external_data_bus[15:8];
end
end else begin
if({Sbit,Wbit}==2'b11)begin
/*signed "16bit" read*/
PARAM1 <= {{8{external_data_bus[7:7]}},external_data_bus[7:0]};
end else begin
PARAM1[7:0] <= external_data_bus[7:0];
end
end
ProgCount <= ProgCount+1;
case(IN_MOD)
3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ;
default: state <= `PROC_EX_STATE_ENTRY;
endcase
end
end
`PROC_DE_LOAD_16_PARAM:begin
if(opcode_size==0)begin
PARAM1[7:0] <= CIR[7:0];
if(ProgCount[0:0]==1)begin
PARAM1[15:8] <= external_data_bus[15:8];
end else begin
PARAM1[15:8] <= external_data_bus[7:0];
end
ProgCount <= ProgCount+1;
case(IN_MOD)
3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ;
default: state <= `PROC_EX_STATE_ENTRY;
endcase
end else begin
if(ProgCount[0:0]==1)begin
ProgCount <= ProgCount+1;
PARAM1[7:0] <= external_data_bus[15:8];
state <= `PROC_DE_LOAD_16_EXTRA_FETCH_SET;
end else begin
PARAM1 <= external_data_bus;
ProgCount <= ProgCount+2;
case(IN_MOD)
3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ;
default: state <= `PROC_EX_STATE_ENTRY;
endcase
end
end
end
`PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin
external_address_bus <= {4'b0,ProgCount};
state <= `PROC_DE_LOAD_16_EXTRA_FETCH;
end
`PROC_DE_LOAD_16_EXTRA_FETCH:begin
ProgCount <= ProgCount+1;
PARAM1[15:8] <= external_data_bus[7:0];
case(IN_MOD)
3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ;
default: state <= `PROC_EX_STATE_ENTRY;
endcase
end
`PROC_MEMIO_READ:begin
/*Decode MOD R/M, read the data and place it to PARAM1*/
case (IN_MOD)
3'b000,
3'b001,
3'b010:begin
case (RM)
3'b000:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b001:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b010:begin
/*[BP]+[SI]*/
`invalid_instruction
end
3'b011:begin
/*[BP]+[DI]*/
`invalid_instruction
end
3'b100:begin
/*[SI]*/
reg_read_port1_addr <= 4'b1110;
state <= `PROC_MEMIO_READ_SETADDR;
end
3'b101:begin
/*[DI]*/
reg_read_port1_addr <= 4'b1111;
state <= `PROC_MEMIO_READ_SETADDR;
end
3'b110:begin
/*d16 */
`invalid_instruction
end
3'b111:begin
/*[BX]*/
reg_read_port1_addr <= 4'b1011;
state <= `PROC_MEMIO_READ_SETADDR;
end
endcase
if(IN_MOD!=3'b000)begin
/*Actually check if 01 and add the 8bits or if 10 add the 16bits ....*/
`invalid_instruction;
end
end
3'b110:begin /* SP Indirect read*/
reg_read_port1_addr <= 4'b1100;
state <= `PROC_MEMIO_READ_SETADDR;
end
default:begin
`invalid_instruction
end
endcase
end
`PROC_MEMIO_READ_SETADDR:begin
if(memio_address_select==0)
external_address_bus <= {4'b0,reg_read_port1_data[15:0]};
else
external_address_bus <= {4'b0,ALU_1O};
state <= reg_read_port1_data[0:0]?`PROC_MEMIO_GET_UNALIGNED_DATA:`PROC_MEMIO_GET_ALIGNED_DATA;
end
`PROC_MEMIO_GET_ALIGNED_DATA:begin
PARAM2 <= (Wbit==1)? external_data_bus : {8'b0,external_data_bus[7:0]} ;
state <= `PROC_EX_STATE_ENTRY;
end
`PROC_MEMIO_GET_UNALIGNED_DATA:begin
PARAM2 <= {8'b0,external_data_bus[15:8]};
if(Wbit==1) begin
state <= `PROC_MEMIO_GET_SECOND_BYTE;
end else begin
state <= `PROC_EX_STATE_ENTRY;
end
end
`PROC_MEMIO_GET_SECOND_BYTE:begin
external_address_bus <= external_address_bus+1;
state <= `PROC_MEMIO_GET_SECOND_BYTE1;
end
`PROC_MEMIO_GET_SECOND_BYTE1:begin
PARAM2[15:8] <= external_data_bus[7:0];
state <= `PROC_EX_STATE_ENTRY;
end
`PROC_EX_STATE_ENTRY:begin
external_address_bus <= {4'b0,ProgCount};
FLAGS[7:0] <= ALU_1FLAGS[7:0];
case(OUT_MOD)
3'b000,
3'b001,
3'b010 : begin
case (RM) /* Duplicate code with write... */
3'b000:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b001:begin
/*[BX]+[SI]*/
`invalid_instruction
end
3'b010:begin
/*[BP]+[SI]*/
`invalid_instruction
end
3'b011:begin
/*[BP]+[DI]*/
`invalid_instruction
end
3'b100:begin
/*[SI]*/
reg_read_port1_addr <= 4'b1110;
state <= `PROC_MEMIO_WRITE;
end
3'b101:begin
/*[DI]*/
reg_read_port1_addr <= 4'b1111;
state <= `PROC_MEMIO_WRITE;
end
3'b110:begin
/*d16 */
`invalid_instruction
end
3'b111:begin
/*[BX]*/
reg_read_port1_addr <= 4'b1011;
state <= `PROC_MEMIO_WRITE;
end
endcase
end
3'b011:begin
reg_write_we <= 0;
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state <= `PROC_IF_STATE_ENTRY;
else
state <= `PROC_NEXT_MICROCODE;
end
3'b100:begin /*No output*/
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state <= `PROC_IF_STATE_ENTRY;
else
state <= `PROC_NEXT_MICROCODE;
end
3'b101:begin /* Program Counter*/
ProgCount <= ALU_1O[15:0];
instruction_size_init <= 1;
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state <= `PROC_IF_STATE_ENTRY;
else
state <= `PROC_NEXT_MICROCODE;
end
3'b110:begin /* SP Indirect write*/
reg_read_port1_addr <= 4'b1100;
state <= `PROC_MEMIO_WRITE;
end
3'b111:begin /* Write to PRAM1 (for microcode calculations) */
PARAM1 <= ALU_1O;
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state <= `PROC_IF_STATE_ENTRY;
else
state <= `PROC_NEXT_MICROCODE;
end
default:begin
`invalid_instruction
end
endcase
end
`PROC_MEMIO_WRITE:begin
/* ADDRESS: reg_read_port1_data DATA:ALU1_O */
`ifdef DEBUG_MEMORY_WRITES
$display("Writing at %04x , %04x",reg_read_port1_data,ALU_1O);
`endif
external_address_bus <= {4'b0,reg_read_port1_data[15:0]};
state <= (Wbit==0) ? `PROC_MEMIO_PUT_BYTE : (reg_read_port1_data[0:0]?`PROC_MEMIO_PUT_UNALIGNED_16BIT_DATA:`PROC_MEMIO_PUT_ALIGNED_16BIT_DATA) ;
end
`PROC_MEMIO_PUT_UNALIGNED_16BIT_DATA:begin
read <= 1;
BHE <= 0;
data_bus_output_register <= {ALU_1O[7:0],ALU_1O[15:8]};
state <= `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT;
end
`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT:begin
write <= 0;
state <= `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2;
end
`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2:begin
write <= 1;
external_address_bus <= external_address_bus+1;
BHE <= 1;
state <= `PROC_MEMIO_WRITE_EXIT;
end
`PROC_MEMIO_PUT_ALIGNED_16BIT_DATA:begin
read <= 1;
data_bus_output_register <= {ALU_1O[15:8],ALU_1O[7:0]};
state <= `PROC_MEMIO_WRITE_EXIT;
end
`PROC_MEMIO_PUT_BYTE:begin
read <= 1;
state <= `PROC_MEMIO_WRITE_EXIT;
if(reg_read_port1_data[0:0]==0) begin
BHE <= 1;
data_bus_output_register <= {8'b0,ALU_1O[7:0]};
end else begin
data_bus_output_register <= {ALU_1O[7:0],8'b0};
end
end
`PROC_MEMIO_WRITE_EXIT:begin
write <= 0;
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state <= `PROC_IF_STATE_ENTRY;
else
state <= `PROC_NEXT_MICROCODE;
end
`PROC_NEXT_MICROCODE:begin
read <= 0;
write <= 1; // maybe we are coming from MEMIO_WRITE
BHE <= 0;
ucode_seq_addr <= ucode_seq_addr_entry; /*Reused for next address*/
if( ucode_seq_addr_entry == `UCODE_NO_INSTRUCTION )begin
/*Finished microcode*/
SIMPLE_MICRO <= 0;
state <= `PROC_IF_STATE_ENTRY;
end else begin
state <= `PROC_DE_STATE_ENTRY;
end
reg_write_we <= 1;
end
default:begin
end
endcase
end
`undef invalid_instruction
endmodule