2023-02-09 14:51:50 +00:00
|
|
|
`timescale 1ns/1ps
|
|
|
|
|
2023-02-08 09:18:00 +00:00
|
|
|
module tb;
|
2023-02-08 12:07:42 +00:00
|
|
|
wire clock;
|
|
|
|
reg reset;
|
|
|
|
reg clk_enable;
|
|
|
|
wire [19:0]address_bus;
|
|
|
|
wire [15:0]data_bus;
|
2023-02-09 14:46:21 +00:00
|
|
|
wire rd,wr,romcs,HALT;
|
2023-02-08 09:18:00 +00:00
|
|
|
|
2023-02-09 14:46:21 +00:00
|
|
|
processor p(clock,reset,address_bus,data_bus,rd,wr,HALT);
|
2023-02-08 12:07:42 +00:00
|
|
|
rom bootrom(address_bus,data_bus,rd,romcs);
|
2023-02-08 09:18:00 +00:00
|
|
|
|
2023-02-08 23:59:06 +00:00
|
|
|
`define CPU_SPEED 1000
|
|
|
|
|
2023-02-08 12:07:42 +00:00
|
|
|
clock_gen #(.FREQ(1000)) u1(clk_enable, clock);
|
2023-02-08 11:57:22 +00:00
|
|
|
|
2023-02-08 12:07:42 +00:00
|
|
|
assign romcs=0;
|
2023-02-08 09:18:00 +00:00
|
|
|
|
2023-02-08 12:07:42 +00:00
|
|
|
initial begin
|
|
|
|
$dumpfile("test.lx2");
|
|
|
|
$dumpvars(0,p);
|
|
|
|
clk_enable <= 1;
|
2023-02-08 09:18:00 +00:00
|
|
|
|
2023-02-08 12:07:42 +00:00
|
|
|
#($random%500)
|
|
|
|
reset = 0;
|
2023-02-09 14:46:21 +00:00
|
|
|
#(`CPU_SPEED)
|
2023-02-08 12:07:42 +00:00
|
|
|
reset = 1;
|
2023-02-10 12:02:20 +00:00
|
|
|
#(`CPU_SPEED*55)
|
2023-02-09 20:16:50 +00:00
|
|
|
//$writememh("register_dump.txt", registers);
|
2023-02-08 12:07:42 +00:00
|
|
|
|
|
|
|
#50 $finish;
|
|
|
|
end
|
2023-02-08 09:18:00 +00:00
|
|
|
endmodule
|
2023-02-09 14:51:50 +00:00
|
|
|
|
|
|
|
|
|
|
|
/*Clock generator*/
|
|
|
|
module clock_gen (input enable, output reg clk);
|
|
|
|
|
|
|
|
parameter FREQ = 1000; // in HZ
|
|
|
|
parameter PHASE = 0; // in degrees
|
|
|
|
parameter DUTY = 50; // in percentage
|
|
|
|
|
|
|
|
real clk_pd = 1.0/FREQ * 1000000; // convert to ms
|
|
|
|
real clk_on = DUTY/100.0 * clk_pd;
|
|
|
|
real clk_off = (100.0 - DUTY)/100.0 * clk_pd;
|
|
|
|
real quarter = clk_pd/4;
|
|
|
|
real start_dly = quarter * PHASE/90;
|
|
|
|
|
|
|
|
reg start_clk;
|
|
|
|
|
|
|
|
initial begin
|
|
|
|
end
|
|
|
|
|
|
|
|
// Initialize variables to zero
|
|
|
|
initial begin
|
|
|
|
clk <= 0;
|
|
|
|
start_clk <= 0;
|
|
|
|
end
|
|
|
|
|
|
|
|
// When clock is enabled, delay driving the clock to one in order
|
|
|
|
// to achieve the phase effect. start_dly is configured to the
|
|
|
|
// correct delay for the configured phase. When enable is 0,
|
|
|
|
// allow enough time to complete the current clock period
|
|
|
|
always @ (posedge enable or negedge enable) begin
|
|
|
|
if (enable) begin
|
|
|
|
#(start_dly) start_clk = 1;
|
|
|
|
end else begin
|
|
|
|
#(start_dly) start_clk = 0;
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
// Achieve duty cycle by a skewed clock on/off time and let this
|
|
|
|
// run as long as the clocks are turned on.
|
|
|
|
always @(posedge start_clk) begin
|
|
|
|
if (start_clk) begin
|
|
|
|
clk = 1;
|
|
|
|
|
|
|
|
while (start_clk) begin
|
|
|
|
#(clk_on) clk = 0;
|
|
|
|
#(clk_off) clk = 1;
|
|
|
|
end
|
|
|
|
|
|
|
|
clk = 0;
|
|
|
|
end
|
|
|
|
end
|
|
|
|
endmodule
|