9086/cpu/processor.v

324 lines
7.2 KiB
Verilog

`include "proc_state_def.v"
`include "alu_header.v"
module mux4 (in1,in2,in3,in4, sel,out);
input [0:1] sel;
parameter WIDTH=16;
input [WIDTH-1:0] in1,in2,in3,in4;
output [WIDTH-1:0] out;
assign out = (sel == 'b00) ? in1 :
(sel == 'b01) ? in2 :
(sel == 'b10) ? in3 :
in4;
endmodule
module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write, output reg HALT,output reg ERROR);
/*** Global Definitions ***/
// State
reg [3:0] state;
// Registers
reg [19:0] ProgCount;
reg [15:0] CIR;
reg [15:0] PARAM1;
reg [15:0] PARAM2;
reg unaligned_access;
// Execution units
reg [1:0] in1_sel;
reg [1:0] in2_sel;
reg [1:0] out_sel;
/*** RESET LOGIC ***/
always @(negedge reset) begin
if (reset==0) begin
@(posedge clock);
state=`PROC_HALT_STATE;
ProgCount=0;//TODO: Reset Vector
HALT=0;
reg_write_we=1;
reg_read_oe=1;
unaligned_access=0;
ALU_1OE=1;
@(posedge reset)
@(negedge clock);
state=`PROC_IF_STATE_ENTRY;
end
end
/*** ALU and EXEC stage logic ***/
//Architectural Register file
reg [3:0] reg_write_addr;
reg [15:0] reg_write_data;
reg reg_write_we;
reg [3:0] reg_read_addr;
reg [15:0] reg_read_data;
reg reg_read_oe;
register_file register_file(reg_write_addr,reg_write_data,reg_write_we,reg_read_addr,reg_read_data,reg_read_oe);
//ALU
mux4 #(.WIDTH(16)) MUX16_1A(
PARAM1,
reg_read_data,
16'b0,
16'b0,
in1_sel,
ALU_1A);
mux4 #(.WIDTH(16)) MUX16_1B(
PARAM2,
reg_read_data,
16'b0,
16'b0,
in2_sel,
ALU_1B);
wire [15:0] ALU_1A;
wire [15:0] ALU_1B;
wire [15:0] ALU_1O;
reg [`ALU_OP_BITS-1:0]ALU_1OP;
reg ALU_1OE;
//reg [15:0] temp_out;
ALU ALU(ALU_1A,ALU_1B,ALU_1OE,ALU_1O,ALU_1OP);
/*** Processor stages ***/
`define invalid_instruction state=`PROC_IF_STATE_ENTRY;ERROR=1;
always @(negedge clock) begin
case(state)
`PROC_IF_WRITE_CIR:begin
if(unaligned_access)begin
CIR[15:8] <= external_data_bus[7:0];
ProgCount=ProgCount+1;
state=`PROC_IF_STATE_EXTRA_FETCH_SET;
end else begin
CIR <= external_data_bus;
state=`PROC_DE_STATE_ENTRY;
end
end
`PROC_IF_STATE_EXTRA_FETCH:begin
CIR[7:0] <= external_data_bus[15:8];
state=`PROC_DE_STATE_ENTRY;
end
`PROC_EX_STATE_EXIT:begin
case(out_sel)
2'b11:begin
reg_write_we=0;
state=`PROC_IF_STATE_ENTRY;
end
default:begin
`invalid_instruction
end
endcase
end
`PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin
external_address_bus = ProgCount;
state=`PROC_DE_LOAD_16_EXTRA_FETCH;
end
endcase
end
always @(posedge clock) begin
case(state)
`PROC_HALT_STATE:begin
end
`PROC_IF_STATE_ENTRY:begin
ERROR=0;
external_address_bus <= ProgCount;
read <= 0;
write <= 1;
reg_read_oe=1;
reg_write_we=1;
ALU_1OE=1;
state=`PROC_IF_WRITE_CIR;
end
`PROC_IF_STATE_EXTRA_FETCH_SET:begin
external_address_bus <= ProgCount;
state=`PROC_IF_STATE_EXTRA_FETCH;
end
/* AFTER THE IF STAGE WE HAVE THE FRIST BYTE OF THE
* INSTRUCTION ADN THE ONE FOLLOWING, ALLIGNED CORRECTLY TO
* CIR */
`PROC_DE_STATE_ENTRY:begin
case(CIR[15:10])
6'b000001 : begin
/* ADD, ... */
if ( CIR[9:9] == 0 )begin
/* Add Immediate word/byte to accumulator */
unaligned_access=~unaligned_access;
in1_sel=2'b00;
in2_sel=2'b01;
out_sel=2'b11;
reg_read_addr={CIR[8:8],3'b000};
reg_write_addr={CIR[8:8],3'b000};
reg_read_oe=0;
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
if(CIR[8:8]==1)
state=`PROC_DE_LOAD_16_PARAM;
else begin
`invalid_instruction /*do 8bit loads*/
end
end else begin
`invalid_instruction
end
end
6'b100000 : begin
/* ADD, ADC, SUB, SBB, CMP , AND, ... */
case (CIR[5:3])
3'b000 : begin
/* Add Immediate word/byte to register/memory */
if(unaligned_access==0)begin
ProgCount=ProgCount+1;
external_address_bus <= ProgCount;
end
in1_sel=2'b00;
in2_sel=2'b01;
out_sel=CIR[7:6];
reg_read_addr={CIR[8:8],CIR[2:0]};
reg_write_addr={CIR[8:8],CIR[2:0]};
reg_read_oe=0;
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
state=`PROC_DE_LOAD_16_PARAM;
if(CIR[8:8]==1)
state=`PROC_DE_LOAD_16_PARAM;
else begin
`invalid_instruction /*do 8bit loads*/
end
end
default:begin
`invalid_instruction
end
endcase
end
6'b101100,
6'b101101:begin
/*Move Immediate byte to register*/
if(unaligned_access==0)begin
ProgCount=ProgCount+1;
external_address_bus <= ProgCount;
end
unaligned_access=~unaligned_access;
in1_sel=2'b00;
in2_sel=2'b00;
out_sel=2'b11;
reg_write_addr={1'b0,CIR[10:8]};
PARAM1[7:0]=CIR[7:0];
PARAM2=0;
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
state=`PROC_EX_STATE_ENTRY;
end
6'b101110,
6'b101111 : begin
/*Move Immediate word to register*/
unaligned_access=~unaligned_access;
in1_sel=2'b00;
in2_sel=2'b00;
out_sel=2'b11;
reg_write_addr={1'b1,CIR[10:8]};
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
PARAM2=0;
state=`PROC_DE_LOAD_16_PARAM;
end
6'b010000,//INC
6'b010001,//INC
6'b010010,//DEC
6'b010011:begin//DEC
/*INC/DEC Register*/
unaligned_access=~unaligned_access;
in1_sel=2'b01;
in2_sel=2'b00;
out_sel=2'b11;
PARAM2=1;
reg_read_addr={1'b1,CIR[10:8]};
reg_write_addr={1'b1,CIR[10:8]};
reg_read_oe=0;
ALU_1OE=0;
if(CIR[11:11]==0)
ALU_1OP=`ALU_OP_ADD;
else
ALU_1OP=`ALU_OP_SUB;
state=`PROC_EX_STATE_ENTRY;
end
6'b111111 : begin
/* INC */
if (CIR[9:9] == 1 ) begin
case (CIR[5:3])
3'b000 :begin
/* Increment Register or Memmory */
if(unaligned_access==0)begin
ProgCount=ProgCount+1;
external_address_bus <= ProgCount;
end
in1_sel=2'b00;
in2_sel=2'b01;
out_sel=CIR[7:6];
PARAM1=1;
reg_read_addr={1'b0,CIR[2:0]};
reg_write_addr={1'b0,CIR[2:0]};
reg_read_oe=0;
ALU_1OE=0;
ALU_1OP=`ALU_OP_ADD;
state=`PROC_EX_STATE_ENTRY;
end
default:begin
`invalid_instruction
end
endcase
end else begin
`invalid_instruction
end
end
6'b111101 : begin
/*HLT, CMC, TEST, NOT, NEG, MUL, IMUL, .... */
case (CIR[9:8])
2'b00:begin
/* HLT*/
unaligned_access=~unaligned_access;
HALT=1;
state=`PROC_HALT_STATE;
end
default:begin
`invalid_instruction;
end
endcase
end
default:begin
`invalid_instruction
end
endcase
end
`PROC_DE_LOAD_16_PARAM:begin
if(unaligned_access==1)begin
PARAM1[7:0] = external_data_bus[7:0];
ProgCount=ProgCount+1;
state=`PROC_DE_LOAD_16_EXTRA_FETCH_SET;
end else begin
PARAM1[7:0] = external_data_bus[15:8];
PARAM1[15:8] = external_data_bus[7:0];
ProgCount=ProgCount+1;
state=`PROC_EX_STATE_ENTRY;
end
end
`PROC_DE_LOAD_16_EXTRA_FETCH:begin
PARAM1[15:8] = external_data_bus[15:8];
state=`PROC_EX_STATE_ENTRY;
end
`PROC_EX_STATE_ENTRY:begin
reg_write_data=ALU_1O;
state=`PROC_EX_STATE_EXIT;
ERROR=0;
end
endcase
end
endmodule