Compare commits

...

2 Commits

6 changed files with 151 additions and 103 deletions

View File

@ -1,4 +1,4 @@
SOURCES=processor.v testbench.v
SOURCES=processor.v testbench.v memory.v
VVP=processor.vvp
.PHONY: run

17
cpu/boot_code.txt Normal file
View File

@ -0,0 +1,17 @@
// 0x00000000
55AA
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

View File

@ -1,18 +1,18 @@
[*]
[*] GTKWave Analyzer v3.3.104 (w)1999-2020 BSI
[*] Wed Feb 8 09:34:17 2023
[*] Wed Feb 8 11:44:52 2023
[*]
[dumpfile] "/home/user/UNI_DATA/COMS30046_2022_TB-2/projects/9086/cpu/test.lx2"
[dumpfile_mtime] "Wed Feb 8 09:33:52 2023"
[dumpfile_size] 362
[dumpfile_mtime] "Wed Feb 8 11:44:20 2023"
[dumpfile_size] 430
[savefile] "/home/user/UNI_DATA/COMS30046_2022_TB-2/projects/9086/cpu/gtkwave_savefile.gtkw"
[timestart] 0
[size] 1630 1059
[size] 1342 1059
[pos] -1 -1
*-20.795050 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
*-20.795050 2883000 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
[treeopen] tb.
[sst_width] 221
[signals_width] 214
[signals_width] 293
[sst_expanded] 1
[sst_vpaned_height] 313
@28
@ -20,7 +20,11 @@ tb.p.clock[0]
tb.p.reset[0]
tb.p.start[0]
tb.p.state[1:0]
@29
tb.p.instruction_finished[0]
@22
tb.p.external_address_bus[19:0]
tb.p.external_data_bus[15:0]
@29
tb.p.read[0]
[pattern_trace] 1
[pattern_trace] 0

7
cpu/memory.v Normal file
View File

@ -0,0 +1,7 @@
module rom(input [19:0] address,output wire [15:0] data ,input rd,input cs);
reg [15:0] memory [15:0];
initial begin
$readmemh("boot_code.txt", memory);
end
assign data = !rd & !cs ? memory[address]: 'hz;
endmodule

View File

@ -1,90 +1,104 @@
`timescale 1ns/1ps
module clock_gen (input enable, output reg clk);
parameter FREQ = 1000; // in HZ
parameter PHASE = 0; // in degrees
parameter DUTY = 50; // in percentage
real clk_pd = 1.0/FREQ * 1000000; // convert to ms
real clk_on = DUTY/100.0 * clk_pd;
real clk_off = (100.0 - DUTY)/100.0 * clk_pd;
real quarter = clk_pd/4;
real start_dly = quarter * PHASE/90;
reg start_clk;
initial begin
end
// Initialize variables to zero
initial begin
clk <= 0;
start_clk <= 0;
end
// When clock is enabled, delay driving the clock to one in order
// to achieve the phase effect. start_dly is configured to the
// correct delay for the configured phase. When enable is 0,
// allow enough time to complete the current clock period
always @ (posedge enable or negedge enable) begin
if (enable) begin
#(start_dly) start_clk = 1;
end else begin
#(start_dly) start_clk = 0;
end
end
// Achieve duty cycle by a skewed clock on/off time and let this
// run as long as the clocks are turned on.
always @(posedge start_clk) begin
if (start_clk) begin
clk = 1;
while (start_clk) begin
#(clk_on) clk = 0;
#(clk_off) clk = 1;
end
clk = 0;
end
end
parameter FREQ = 1000; // in HZ
parameter PHASE = 0; // in degrees
parameter DUTY = 50; // in percentage
real clk_pd = 1.0/FREQ * 1000000; // convert to ms
real clk_on = DUTY/100.0 * clk_pd;
real clk_off = (100.0 - DUTY)/100.0 * clk_pd;
real quarter = clk_pd/4;
real start_dly = quarter * PHASE/90;
reg start_clk;
initial begin
end
// Initialize variables to zero
initial begin
clk <= 0;
start_clk <= 0;
end
// When clock is enabled, delay driving the clock to one in order
// to achieve the phase effect. start_dly is configured to the
// correct delay for the configured phase. When enable is 0,
// allow enough time to complete the current clock period
always @ (posedge enable or negedge enable) begin
if (enable) begin
#(start_dly) start_clk = 1;
end else begin
#(start_dly) start_clk = 0;
end
end
// Achieve duty cycle by a skewed clock on/off time and let this
// run as long as the clocks are turned on.
always @(posedge start_clk) begin
if (start_clk) begin
clk = 1;
while (start_clk) begin
#(clk_on) clk = 0;
#(clk_off) clk = 1;
end
clk = 0;
end
end
endmodule
module processor ( input clock, input reset );
reg [1:0] state;
reg start=0;
reg instruction_finished;
module processor ( input clock, input reset , output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write);
/* State */
reg [1:0] state;
reg start=0;
reg instruction_finished;
/* RESET LOGIC */
always @(negedge reset) begin
if (reset==0) begin
@(posedge clock);
state=0;
#10
start=1;
end
end
/* Registers */
reg [19:0] ProgCount;
/* CLOCK LOGIC */
always @(posedge clock) begin
if(instruction_finished) begin
state =0;
end else begin
if (clock && start==1) begin
state=state+1;
end
end
end
always @(state) begin
if (state==2) begin
instruction_finished=1;
end else begin
instruction_finished=0;
end
end
/* RESET LOGIC */
always @(negedge reset) begin
if (reset==0) begin
@(posedge clock);
state=0;
ProgCount=0;//TODO: Reset Vector
#10
start=1;
end
end
/* CLOCK LOGIC */
always @(posedge clock) begin
if(instruction_finished) begin
state =0;
end else begin
if (clock && start==1) begin
state=state+1;
end
end
end
always @(state) begin
if (state==2) begin
instruction_finished=1;
end else begin
instruction_finished=0;
end
end
/* Processor stages */
always @(state) begin
if (state==0) begin
external_address_bus <= ProgCount;
read <= 0;
write <= 1;
end
end
endmodule

View File

@ -1,23 +1,29 @@
module tb;
wire clock;
reg reset;
reg clk_enable;
wire clock;
reg reset;
reg clk_enable;
wire [19:0]address_bus;
wire [15:0]data_bus;
wire rd,wr,romcs;
processor p(clock,reset);
clock_gen #(.FREQ(1000)) u1(clk_enable, clock);
processor p(clock,reset,address_bus,data_bus,rd,wr);
rom bootrom(address_bus,data_bus,rd,romcs);
initial begin
$dumpfile("test.lx2");
$dumpvars(0,p);
clk_enable <= 1;
clock_gen #(.FREQ(1000)) u1(clk_enable, clock);
#($random%500)
reset = 0;
#(100)
reset = 1;
#(10000)
assign romcs=0;
#50 $finish;
end
initial begin
$dumpfile("test.lx2");
$dumpvars(0,p);
clk_enable <= 1;
#($random%500)
reset = 0;
#(100)
reset = 1;
#(10000)
#50 $finish;
end
endmodule