Overhauled cpu frontend. Made memory byte addressable (necessary), cleaned up state machine and fixed small bug with MOV

This commit is contained in:
(Tim) Efthimis Kritikos 2023-03-03 06:29:06 +00:00
parent 70a9ce6368
commit f60084344e
7 changed files with 281 additions and 226 deletions

View File

@ -73,3 +73,21 @@ Flag register:
* D - Direction flag : 1: string instructions decrement 0: they increment * D - Direction flag : 1: string instructions decrement 0: they increment
* O - Overflow flag : set on arithmetic overflow * O - Overflow flag : set on arithmetic overflow
### Memory addressing
Memory is split into two 8bit banks and can be addresses separately with the A0 line and BHE pin
| BHE | A0 | OPERATION |
|:-----:|:----:|-------------------------------|
| 0 | 0 |Both bytes addresses |
| 0 | 1 |Only higher 15:8 bits addressed|
| 1 | 0 |Only lower 7:0 bits addressed |
| 1 | 1 |No bits are addressed |
Essentially address bits 19:1 address a 16bit memory while bits A0 and BHE select what byte(s) will be read or written
|A1,A2| HBE=0 A0=1 | HBE=1 A0=0 |
|-----|:----------:|:----------:|
| 0,0 | B1 | B0 |
| 0,1 | B3 | B2 |
| 1,0 | B5 | B4 |

View File

@ -1,8 +1,9 @@
start: start:
MOV SP,#STACK
MOV AX,#0x0000 MOV AX,#0x0000
MOV CX,#0x0000 MOV CX,#0x0000
MOV BX,#0x0000 MOV BX,#0x0000
ADD AX,#0xDEAD CALL TEST_
ADD CX,#0xBEEF ADD CX,#0xBEEF
ADD CX,#0x4111 ADD CX,#0x4111
mov AX,#0x00FF mov AX,#0x00FF
@ -30,3 +31,9 @@ mov ah,#2
mov dl,#'0 mov dl,#'0
int #0x21 int #0x21
hlt hlt
TEST_:
ADD AX,#0xDEAD
RET
.BLKB 10
STACK:

View File

@ -43,12 +43,13 @@ assign DATA=ucode[ADDR];
endmodule endmodule
module decoder( module decoder(
input wire [15:0] CIR,input wire [15:0] FLAGS, output wire [4:0] INSTRUCTION_INFO, output wire [1:0]DECODER_SIGNALS,output reg [`PROC_STATE_BITS-1:0]next_state input wire [15:0] CIR,input wire [15:0] FLAGS, output wire [3:0] INSTRUCTION_INFO, output wire [1:0]DECODER_SIGNALS,output reg [`PROC_STATE_BITS-1:0]next_state
,output reg [2:0]IN_MOD, output reg [2:0]RM, output reg [15:0] PARAM1,output reg [15:0] PARAM2 ,output reg [2:0]IN_MOD, output reg [2:0]RM, output reg [15:0] PARAM1,output reg [15:0] PARAM2
,output reg [1:0]in_alu1_sel1,output reg [1:0]in_alu1_sel2,output reg [2:0]OUT_MOD ,output reg [1:0]in_alu1_sel1,output reg [1:0]in_alu1_sel2,output reg [2:0]OUT_MOD
,output wire [11:0]REGISTER_FILE_CONTROL ,output wire [11:0]REGISTER_FILE_CONTROL
,output reg [2:0]ALU_1OP ,output reg [2:0]ALU_1OP
,output reg [`UCODE_ADDR_BITS-1:0] seq_addr_entry, input wire SIMPLE_MICRO, input wire [`UCODE_ADDR_BITS-1:0] seq_addr_input ,output reg [`UCODE_ADDR_BITS-1:0] seq_addr_entry, input wire SIMPLE_MICRO, input wire [`UCODE_ADDR_BITS-1:0] seq_addr_input
,output reg [2:0]instruction_size
); );
reg [3:0]reg_read_port1_addr; reg [3:0]reg_read_port1_addr;
@ -57,8 +58,8 @@ reg [3:0]reg_write_addr;
assign REGISTER_FILE_CONTROL={reg_write_addr,reg_read_port1_addr,reg_read_port2_addr}; assign REGISTER_FILE_CONTROL={reg_write_addr,reg_read_port1_addr,reg_read_port2_addr};
/* For correct fetching of instructions and global options for the alu */ /* For correct fetching of instructions and global options for the alu */
reg Wbit,Sbit,unaligning,opcode_size,has_operands; reg Wbit,Sbit,unaligning,opcode_size;
assign INSTRUCTION_INFO={Wbit,Sbit,unaligning,opcode_size,has_operands}; assign INSTRUCTION_INFO={Wbit,Sbit,unaligning,opcode_size};
reg ERROR, HALT; reg ERROR, HALT;
assign DECODER_SIGNALS={ERROR,HALT}; assign DECODER_SIGNALS={ERROR,HALT};
@ -87,12 +88,14 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* ADD - Add Immediate word/byte to accumulator */ /* ADD - Add Immediate word/byte to accumulator */
/* 0 0 0 0 0 1 0 W | DATA | DATA if W |*/ /* 0 0 0 0 0 1 0 W | DATA | DATA if W |*/
opcode_size=0; opcode_size=0;
has_operands=1;
Wbit=CIR[8:8]; Wbit=CIR[8:8];
if(Wbit) if(Wbit)begin
`start_unaligning_instruction `start_unaligning_instruction
else instruction_size=3;
end else begin
`start_aligning_instruction `start_aligning_instruction
instruction_size=2;
end
IN_MOD=2'b11; IN_MOD=2'b11;
in_alu1_sel1=2'b00; in_alu1_sel1=2'b00;
in_alu1_sel2=2'b01; in_alu1_sel2=2'b01;
@ -112,7 +115,6 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* SUB - Subtract immediate word/byte from register/memory */ /* SUB - Subtract immediate word/byte from register/memory */
/* 1 0 0 0 0 0 S W | MOD 1 0 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ /* 1 0 0 0 0 0 S W | MOD 1 0 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */
opcode_size=1; opcode_size=1;
has_operands=1;
Wbit=CIR[8:8]; Wbit=CIR[8:8];
Sbit=CIR[9:9]; Sbit=CIR[9:9];
IN_MOD=CIR[7:6]; IN_MOD=CIR[7:6];
@ -130,10 +132,12 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
2'b00,2'b11:begin 2'b00,2'b11:begin
`start_unaligning_instruction `start_unaligning_instruction
next_state=`PROC_DE_LOAD_8_PARAM; next_state=`PROC_DE_LOAD_8_PARAM;
instruction_size=3;
end end
2'b01:begin 2'b01:begin
`start_aligning_instruction `start_aligning_instruction
next_state=`PROC_DE_LOAD_16_PARAM; next_state=`PROC_DE_LOAD_16_PARAM;
instruction_size=4;
end end
default:begin default:begin
`invalid_instruction `invalid_instruction
@ -152,16 +156,17 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* CMP - compare Immediate with register / memory */ /* CMP - compare Immediate with register / memory */
/* 1 0 0 0 0 0 S W | MOD 1 1 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ /* 1 0 0 0 0 0 S W | MOD 1 1 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */
opcode_size=1; opcode_size=1;
has_operands=1;
Wbit=CIR[8:8]; Wbit=CIR[8:8];
Sbit=CIR[9:9]; Sbit=CIR[9:9];
IN_MOD=CIR[7:6]; IN_MOD=CIR[7:6];
RM=CIR[2:0]; RM=CIR[2:0];
case({Sbit,Wbit}) case({Sbit,Wbit})
2'b00,2'b11:begin 2'b00,2'b11:begin
instruction_size=3;
`start_unaligning_instruction `start_unaligning_instruction
end end
2'b01:begin 2'b01:begin
instruction_size=4;
`start_aligning_instruction `start_aligning_instruction
end end
2'b10:begin 2'b10:begin
@ -187,8 +192,8 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* MOV - Move Immediate byte to register */ /* MOV - Move Immediate byte to register */
/* 1 0 1 1 W REG | DATA | DATA if W |*/ /* 1 0 1 1 W REG | DATA | DATA if W |*/
`start_aligning_instruction `start_aligning_instruction
has_operands=1;
Wbit=CIR[11:11]; /* IS 0 */ Wbit=CIR[11:11]; /* IS 0 */
instruction_size=2;
opcode_size=0; opcode_size=0;
IN_MOD=2'b11; IN_MOD=2'b11;
in_alu1_sel1=2'b00; in_alu1_sel1=2'b00;
@ -203,8 +208,8 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
11'b1011_1xxx_xxx : begin 11'b1011_1xxx_xxx : begin
/*MOV - Move Immediate word to register*/ /*MOV - Move Immediate word to register*/
`start_unaligning_instruction `start_unaligning_instruction
has_operands=1;
Wbit=CIR[11:11]; /*IS 1 */ Wbit=CIR[11:11]; /*IS 1 */
instruction_size=3;
opcode_size=0; opcode_size=0;
IN_MOD=2'b11; IN_MOD=2'b11;
in_alu1_sel1=2'b00; in_alu1_sel1=2'b00;
@ -219,16 +224,16 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
11'b1000_10xx_xxx : begin 11'b1000_10xx_xxx : begin
/* MOV - Reg/Mem to/from register */ /* MOV - Reg/Mem to/from register */
/* 1 0 0 0 1 0 D W | MOD REG RM | < DISP LO > | < DISP HI > |*/ /* 1 0 0 0 1 0 D W | MOD REG RM | < DISP LO > | < DISP HI > |*/
has_operands=0;
`start_aligning_instruction `start_aligning_instruction
opcode_size=1; opcode_size=1;
IN_MOD=CIR[7:6]; instruction_size=2;
RM=CIR[2:0]; RM=CIR[2:0];
Wbit=CIR[8:8]; Wbit=CIR[8:8];
in_alu1_sel1=2'b00; in_alu1_sel1=2'b00;
PARAM1=0; PARAM1=0;
if(CIR[9:9] == 1)begin if(CIR[9:9] == 1)begin
/* Mem/Reg to reg */ /* Mem/Reg to reg */
IN_MOD={1'b0,CIR[7:6]};
if(IN_MOD==2'b11)begin if(IN_MOD==2'b11)begin
/*Reg to Reg*/ /*Reg to Reg*/
in_alu1_sel2=2'b01; in_alu1_sel2=2'b01;
@ -243,16 +248,16 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
reg_write_addr={Wbit,CIR[5:3]}; reg_write_addr={Wbit,CIR[5:3]};
end else begin end else begin
/* Reg to Mem/Reg */ /* Reg to Mem/Reg */
IN_MOD=3'b011;
OUT_MOD={1'b0,CIR[7:6]};
if(IN_MOD==2'b11)begin if(IN_MOD==2'b11)begin
/*Reg to Reg*/ /*Reg to Reg*/
in_alu1_sel2=2'b01; in_alu1_sel2=2'b01;
OUT_MOD=3'b011;
reg_write_addr={Wbit,RM}; reg_write_addr={Wbit,RM};
next_state=`PROC_EX_STATE_ENTRY; next_state=`PROC_EX_STATE_ENTRY;
end else begin end else begin
/*Reg to Mem*/ /*Reg to Mem*/
in_alu1_sel2=2'b00; in_alu1_sel2=2'b00;
OUT_MOD={1'b0,IN_MOD};
next_state=`PROC_DE_LOAD_REG_TO_PARAM; next_state=`PROC_DE_LOAD_REG_TO_PARAM;
end end
reg_read_port2_addr={Wbit,CIR[5:3]}; reg_read_port2_addr={Wbit,CIR[5:3]};
@ -265,7 +270,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* | 0 1 0 0 1 REG | */ /* | 0 1 0 0 1 REG | */
/* INC - Increment Register */ /* INC - Increment Register */
/* | 0 1 0 0 0 REG | */ /* | 0 1 0 0 0 REG | */
has_operands=0; instruction_size=1;
opcode_size=0; opcode_size=0;
`start_unaligning_instruction `start_unaligning_instruction
Wbit=1; Wbit=1;
@ -287,7 +292,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* 1 1 1 1 1 1 1 W | MOD 0 0 0 R/M | < DISP LO> | < DISP HI> */ /* 1 1 1 1 1 1 1 W | MOD 0 0 0 R/M | < DISP LO> | < DISP HI> */
/* DEC - Register/Memory */ /* DEC - Register/Memory */
/* 1 1 1 1 1 1 1 W | MOD 0 0 1 R/M | < DISP LO> | < DISP HI> */ /* 1 1 1 1 1 1 1 W | MOD 0 0 1 R/M | < DISP LO> | < DISP HI> */
has_operands=0; instruction_size=2;
opcode_size=1; opcode_size=1;
`start_aligning_instruction `start_aligning_instruction
Wbit=CIR[8:8]; Wbit=CIR[8:8];
@ -311,7 +316,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
11'b1111_0100_xxx : begin 11'b1111_0100_xxx : begin
/* HLT - Halt */ /* HLT - Halt */
/* 1 1 1 1 0 1 0 0 | */ /* 1 1 1 1 0 1 0 0 | */
has_operands=0; instruction_size=1;
opcode_size=0; opcode_size=0;
`start_unaligning_instruction `start_unaligning_instruction
IN_MOD=2'b11; IN_MOD=2'b11;
@ -326,11 +331,13 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* W flag and my assembler seem to disagree */ /* W flag and my assembler seem to disagree */
Wbit=CIR[8:8]; Wbit=CIR[8:8];
opcode_size=0; opcode_size=0;
has_operands=1; if(Wbit)begin
if(Wbit) instruction_size=3;
`start_unaligning_instruction `start_unaligning_instruction
else end else begin
instruction_size=2;
`start_aligning_instruction `start_aligning_instruction
end
IN_MOD=2'b11; IN_MOD=2'b11;
in_alu1_sel1=2'b00; in_alu1_sel1=2'b00;
in_alu1_sel2=2'b01; in_alu1_sel2=2'b01;
@ -353,7 +360,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* JNS -Jump on not Sign */ /* JNS -Jump on not Sign */
/* 0 1 1 1 1 0 0 1 | IP-INC8 |*/ /* 0 1 1 1 1 0 0 1 | IP-INC8 |*/
/* .... */ /* .... */
has_operands=1; instruction_size=2;
`start_aligning_instruction `start_aligning_instruction
Wbit=1; Wbit=1;
opcode_size=0; opcode_size=0;
@ -401,8 +408,8 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* JMP - Unconditional jump direct within segment (short) */ /* JMP - Unconditional jump direct within segment (short) */
/* | 1 1 1 0 1 0 1 1 | IP-INC-LO | */ /* | 1 1 1 0 1 0 1 1 | IP-INC-LO | */
`start_aligning_instruction `start_aligning_instruction
instruction_size=2;
opcode_size=0; opcode_size=0;
has_operands=1;
Wbit=1; Wbit=1;
in_alu1_sel1=2'b10; in_alu1_sel1=2'b10;
in_alu1_sel2=2'b00; in_alu1_sel2=2'b00;
@ -414,7 +421,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
11'b1100_1101_xxx:begin 11'b1100_1101_xxx:begin
/* INT - execute interrupt handler */ /* INT - execute interrupt handler */
/* 1 1 0 0 1 1 0 1 | DATA |*/ /* 1 1 0 0 1 1 0 1 | DATA |*/
has_operands=1; instruction_size=2;
opcode_size=0; opcode_size=0;
`start_aligning_instruction `start_aligning_instruction
/* Emulate MS-DOS print routines */ /* Emulate MS-DOS print routines */
@ -428,9 +435,9 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* 1 1 1 0 1 0 0 0 | IP-INC-LO | IP-INC-HI |*/ /* 1 1 1 0 1 0 0 0 | IP-INC-LO | IP-INC-HI |*/
// Microcode instruction // Microcode instruction
instruction_size=3;
`start_unaligning_instruction `start_unaligning_instruction
opcode_size=0; opcode_size=0;
has_operands=1;
Wbit=1; Wbit=1;
Sbit=1; Sbit=1;
PARAM2=2; //subtract from sp PARAM2=2; //subtract from sp
@ -442,13 +449,8 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
// Microcode instruction // Microcode instruction
`start_unaligning_instruction `start_unaligning_instruction
instruction_size=1;
opcode_size=0; opcode_size=0;
/* TODO: This is a hack to prevent IF from
* thinking it can retrieve half of the opcode
* from CIR and the previous byte on the data
* bus. We are jumping so all that data has to
* be thrown away */
has_operands=1;
Wbit=1; Wbit=1;
Sbit=0; Sbit=0;
PARAM1=2; PARAM1=2;
@ -459,7 +461,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* | 1 0 1 0 1 0 1 W | */ /* | 1 0 1 0 1 0 1 W | */
`start_unaligning_instruction `start_unaligning_instruction
opcode_size=0; opcode_size=0;
has_operands=0; instruction_size=1;
Wbit=CIR[8:8]; Wbit=CIR[8:8];
Sbit=0; Sbit=0;
RM=101; RM=101;
@ -471,7 +473,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* | 0 1 0 1 0 REG | */ /* | 0 1 0 1 0 REG | */
`start_unaligning_instruction `start_unaligning_instruction
opcode_size=0; opcode_size=0;
has_operands=0; instruction_size=1;
Wbit=1; Wbit=1;
Sbit=0; Sbit=0;
PARAM2=2; PARAM2=2;
@ -482,14 +484,15 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* TEST - Bitwise AND affecting only flags */ /* TEST - Bitwise AND affecting only flags */
/* 1 1 1 1 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */ /* 1 1 1 1 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */
opcode_size=1; opcode_size=1;
has_operands=1;
Wbit=CIR[8:8]; Wbit=CIR[8:8];
IN_MOD={1'b0,CIR[7:6]}; IN_MOD={1'b0,CIR[7:6]};
RM={CIR[2:0]}; RM={CIR[2:0]};
if(Wbit==1)begin if(Wbit==1)begin
`start_aligning_instruction `start_aligning_instruction
instruction_size=4;
next_state=`PROC_DE_LOAD_16_PARAM; next_state=`PROC_DE_LOAD_16_PARAM;
end else begin end else begin
instruction_size=3;
`start_unaligning_instruction `start_unaligning_instruction
next_state=`PROC_DE_LOAD_8_PARAM; next_state=`PROC_DE_LOAD_8_PARAM;
end end
@ -511,7 +514,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* | 0 1 0 1 1 REG | */ /* | 0 1 0 1 1 REG | */
`start_unaligning_instruction `start_unaligning_instruction
opcode_size=0; opcode_size=0;
has_operands=0; instruction_size=1;
Wbit=1; Wbit=1;
Sbit=0; Sbit=0;
PARAM1=2; PARAM1=2;
@ -523,7 +526,7 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* 1 1 1 1 1 1 1 1 | MOD 1 0 0 R/M | < DISP-LO > | < DISP-HI > */ /* 1 1 1 1 1 1 1 1 | MOD 1 0 0 R/M | < DISP-LO > | < DISP-HI > */
`start_aligning_instruction `start_aligning_instruction
opcode_size=1; opcode_size=1;
has_operands=0; instruction_size=2;
Wbit=1; Wbit=1;
IN_MOD={1'b0,CIR[7:6]}; IN_MOD={1'b0,CIR[7:6]};
RM=CIR[2:0]; RM=CIR[2:0];
@ -544,13 +547,14 @@ always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin
/* 1 1 0 0 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */ /* 1 1 0 0 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */
Wbit=CIR[8:8]; Wbit=CIR[8:8];
opcode_size=1; opcode_size=1;
has_operands=1;
in_alu1_sel1=2'b00; in_alu1_sel1=2'b00;
in_alu1_sel2=2'b11; in_alu1_sel2=2'b11;
if(Wbit==1)begin if(Wbit==1)begin
instruction_size=4;
`start_aligning_instruction; `start_aligning_instruction;
next_state=`PROC_DE_LOAD_16_PARAM; next_state=`PROC_DE_LOAD_16_PARAM;
end else begin end else begin
instruction_size=3;
`start_unaligning_instruction; `start_unaligning_instruction;
next_state=`PROC_DE_LOAD_8_PARAM; next_state=`PROC_DE_LOAD_8_PARAM;
end end

View File

@ -17,7 +17,7 @@
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */ along with this program. If not, see <http://www.gnu.org/licenses/>. */
module mem(input [19:0] address,inout wire [15:0] data ,input rd,input wr,input cs); module doublemem(input [19:0] address,inout wire [15:0] data ,input rd,input wr,input BHE,input cs);
reg [15:0] memory [0:32768]; reg [15:0] memory [0:32768];
initial begin initial begin
string boot_code; string boot_code;
@ -28,10 +28,15 @@ initial begin
$readmemh(boot_code, memory,0,16383); $readmemh(boot_code, memory,0,16383);
end end
assign data = !rd & !cs ? memory[address[15:0]]: 16'hz; assign data[7:0] = !address[0:0] & !rd & !cs ? memory[address[15:1]][15:8] : 16'hz;
assign data[15:8] = !BHE & !rd & !cs ? memory[address[15:1]][7:0] : 16'hz;
always @(negedge wr) begin always @(negedge wr) begin
memory[address[15:0]]=data; if(BHE==0)
memory[address[15:1]][7:0]=data[15:8];
if(address[0]==0)
memory[address[15:1]][15:8]=data[7:0];
end end
endmodule endmodule

View File

@ -29,6 +29,7 @@
`define PROC_IF_STATE_EXTRA_FETCH_SET 6'b000011 `define PROC_IF_STATE_EXTRA_FETCH_SET 6'b000011
`define PROC_IF_STATE_EXTRA_FETCH 6'b000100 `define PROC_IF_STATE_EXTRA_FETCH 6'b000100
/*DECODE SATE*/ /*DECODE SATE*/
`define PROC_DE_STATE_ENTRY 6'b001000 `define PROC_DE_STATE_ENTRY 6'b001000
`define PROC_DE_LOAD_16_PARAM 6'b001001 `define PROC_DE_LOAD_16_PARAM 6'b001001
@ -44,7 +45,6 @@
`define PROC_MEMIO_GET_SECOND_BYTE 6'b010100 `define PROC_MEMIO_GET_SECOND_BYTE 6'b010100
`define PROC_MEMIO_GET_SECOND_BYTE1 6'b010101 `define PROC_MEMIO_GET_SECOND_BYTE1 6'b010101
`define PROC_DE_LOAD_8_PARAM 6'b010110 `define PROC_DE_LOAD_8_PARAM 6'b010110
`define PROC_DE_LOAD_8_PARAM_UNALIGNED 6'b010111
/*EXECUTE STATE*/ /*EXECUTE STATE*/
`define PROC_EX_STATE_ENTRY 6'b100000 `define PROC_EX_STATE_ENTRY 6'b100000
@ -52,16 +52,11 @@
/*MEM/IO WRITE*/ /*MEM/IO WRITE*/
`define PROC_MEMIO_WRITE 6'b101000 `define PROC_MEMIO_WRITE 6'b101000
//`define PROC_MEMIO_WRITE_SETADDR 6'b010101 //`define PROC_MEMIO_WRITE_SETADDR 6'b010101
`define PROC_MEMIO_PUT_ALIGNED_DATA 6'b101001 `define PROC_MEMIO_PUT_ALIGNED_16BIT_DATA 6'b101001
`define PROC_MEMIO_PUT_UNALIGNED_DATA 6'b101010 `define PROC_MEMIO_PUT_UNALIGNED_16BIT_DATA 6'b101010
`define PROC_MEMIO_PUT_BYTE 6'b101011 `define PROC_MEMIO_PUT_BYTE 6'b101011
`define PROC_MEMIO_PUT_BYTE_STOP_READ 6'b101100
`define PROC_MEMIO_WRITE_EXIT 6'b101101 `define PROC_MEMIO_WRITE_EXIT 6'b101101
`define PROC_MEMIO_PUT_UNALIGNED_FIRST_BYTE 6'b101110
`define PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT 6'b101111 `define PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT 6'b101111
`define PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT1 6'b110001
`define PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2 6'b110010 `define PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2 6'b110010
`define PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT3 6'b110011
`define PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT4 6'b110100
`define PROC_NEXT_MICROCODE 6'b111000 `define PROC_NEXT_MICROCODE 6'b111000

View File

@ -22,7 +22,14 @@
`include "config.v" `include "config.v"
`include "ucode_header.v" `include "ucode_header.v"
module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write, output reg HALT,output reg ERROR); //HALT: active high
//ERROR: active high
//IOMEM: 1=IO 0=MEM
//write: active low
//read: active low
//reset: active low
module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write,output reg BHE,output reg IOMEM, output reg HALT,output reg ERROR);
/*if we don't read, output the register to have the bus stable by the write falling edge*/ /*if we don't read, output the register to have the bus stable by the write falling edge*/
reg [15:0] data_bus_output_register; reg [15:0] data_bus_output_register;
@ -33,7 +40,7 @@ assign external_data_bus=read?data_bus_output_register:16'hz;
reg [`PROC_STATE_BITS-1:0] state; reg [`PROC_STATE_BITS-1:0] state;
/*############ Decoder ########################################################## */ /*############ Decoder ########################################################## */
wire Wbit, Sbit, unaligning_instruction,opcode_size, has_operands; wire Wbit, Sbit, unaligning_instruction,opcode_size;
wire [`PROC_STATE_BITS-1:0] next_state; wire [`PROC_STATE_BITS-1:0] next_state;
wire [2:0]RM; wire [2:0]RM;
wire [15:0]DE_PARAM1;// Input param1 form decoder to alu wire [15:0]DE_PARAM1;// Input param1 form decoder to alu
@ -41,26 +48,41 @@ wire [15:0]DE_PARAM2;
wire DE_ERROR,DE_HALT; wire DE_ERROR,DE_HALT;
wire [3:0]DE_reg_read_port1_addr,DE_reg_write_addr,DE_reg_read_port2_addr; wire [3:0]DE_reg_read_port1_addr,DE_reg_write_addr,DE_reg_read_port2_addr;
wire [11:0]DE_REGISTER_CONTROL; wire [11:0]DE_REGISTER_CONTROL;
wire [4:0]INSTRUCTION_INFO; wire [3:0]INSTRUCTION_INFO;
wire [1:0]DECODER_SIGNALS; wire [1:0]DECODER_SIGNALS;
wire [`UCODE_ADDR_BITS-1:0] ucode_seq_addr_entry; wire [`UCODE_ADDR_BITS-1:0] ucode_seq_addr_entry;
reg SIMPLE_MICRO; /* otuput simple decodings (=0) or microcode data (=1) */ reg SIMPLE_MICRO; /* otuput simple decodings (=0) or microcode data (=1) */
wire [2:0] DE_instruction_size;
reg instruction_size_init;
wire [2:0] instruction_size;
assign instruction_size = instruction_size_init ? 3'b010 : DE_instruction_size;
decoder decoder( decoder decoder(
CIR,FLAGS,INSTRUCTION_INFO,DECODER_SIGNALS,next_state .CIR(CIR),
,IN_MOD,RM,DE_PARAM1,DE_PARAM2 .FLAGS(FLAGS),
,in_alu1_sel1,in_alu1_sel2,OUT_MOD .INSTRUCTION_INFO(INSTRUCTION_INFO),
,DE_REGISTER_CONTROL .DECODER_SIGNALS(DECODER_SIGNALS),
,ALU_1OP .next_state(next_state),
,ucode_seq_addr_entry,SIMPLE_MICRO,ucode_seq_addr .IN_MOD(IN_MOD),
.RM(RM),
.PARAM1(DE_PARAM1),
.PARAM2(DE_PARAM2),
.in_alu1_sel1(in_alu1_sel1),
.in_alu1_sel2(in_alu1_sel2),
.OUT_MOD(OUT_MOD),
.REGISTER_FILE_CONTROL(DE_REGISTER_CONTROL),
.ALU_1OP(ALU_1OP),
.seq_addr_entry(ucode_seq_addr_entry),
.SIMPLE_MICRO(SIMPLE_MICRO),
.seq_addr_input(ucode_seq_addr),
.instruction_size(DE_instruction_size)
); );
assign Wbit=INSTRUCTION_INFO[4:4]; assign Wbit=INSTRUCTION_INFO[3:3];
assign Sbit=INSTRUCTION_INFO[3:3]; assign Sbit=INSTRUCTION_INFO[2:2];
assign unaligning_instruction=INSTRUCTION_INFO[2:2]; assign unaligning_instruction=INSTRUCTION_INFO[1:1];
assign opcode_size=INSTRUCTION_INFO[1:1]; assign opcode_size=INSTRUCTION_INFO[0:0];
assign has_operands=INSTRUCTION_INFO[0:0];
assign DE_reg_write_addr=DE_REGISTER_CONTROL[11:8]; assign DE_reg_write_addr=DE_REGISTER_CONTROL[11:8];
assign DE_reg_read_port1_addr=DE_REGISTER_CONTROL[7:4]; assign DE_reg_read_port1_addr=DE_REGISTER_CONTROL[7:4];
@ -73,13 +95,9 @@ reg [`UCODE_ADDR_BITS-1:0] ucode_seq_addr;
/*############ REGISTERS ########################################################## */ /*############ REGISTERS ########################################################## */
reg [19:0] ProgCount; //TODO: do i create a lot of adders each place i increment it?
reg [15:0] CIR; reg [15:0] CIR;
reg [15:0] PARAM1; reg [15:0] PARAM1;
reg [15:0] PARAM2; reg [15:0] PARAM2;
reg one_byte_instruction;
reg unaligned_access;
reg we_jumped; /*Only used to signify that a microcoded instruction jumped and we should not update the unaligned_access bit after the end of the instruction*/
reg [15:0]FLAGS; reg [15:0]FLAGS;
@ -101,7 +119,21 @@ mux4 #(.WIDTH(16)) REG_FILE_WRITE_IN_MUX(
16'hz, 16'hz,
reg_write_in_sel, reg_write_in_sel,
reg_write_data); reg_write_data);
register_file register_file(reg_write_addr,reg_write_data,reg_write_we,reg_read_port1_addr,reg_read_port1_data,reg_read_port2_addr,reg_read_port2_data); register_file register_file(
.write_port1_addr(reg_write_addr),
.write_port1_data(reg_write_data),
.write_port1_we(reg_write_we),
.read_port1_addr(reg_read_port1_addr),
.read_port1_data(reg_read_port1_data),
.read_port2_addr(reg_read_port2_addr),
.read_port2_data(reg_read_port2_data)
);
reg [15:0] ProgCount;
wire ProgCount_next_opcode;
wire ProgCount_arg;
assign ProgCount_next_opcode=ProgCount+instruction_size;
assign ProgCount_arg=ProgCount+opcode_size+1;
/*############ ALU / Execution units ########################################################## */ /*############ ALU / Execution units ########################################################## */
// ALU 1 // ALU 1
@ -114,7 +146,7 @@ reg [2:0] OUT_MOD;
mux4 #(.WIDTH(16)) MUX16_1A( mux4 #(.WIDTH(16)) MUX16_1A(
/*0*/ PARAM1, /*0*/ PARAM1,
/*1*/ reg_read_port1_data, /*1*/ reg_read_port1_data,
/*2*/ {ProgCount[14:0],unaligned_access^unaligning_instruction}, /*2*/ ProgCount[15:0],
/*3*/ 16'b0000000000000000, /*0 Constant*/ /*3*/ 16'b0000000000000000, /*0 Constant*/
in_alu1_sel1, in_alu1_sel1,
ALU_1A); ALU_1A);
@ -122,7 +154,7 @@ mux4 #(.WIDTH(16)) MUX16_1A(
mux4 #(.WIDTH(16)) MUX16_1B( mux4 #(.WIDTH(16)) MUX16_1B(
/*0*/ PARAM2, /*0*/ PARAM2,
/*1*/ reg_read_port2_data, /*1*/ reg_read_port2_data,
/*2*/ {ProgCount[14:0],unaligned_access^unaligning_instruction}, /*2*/ ProgCount[15:0],
/*3*/ 16'b0000000000000000, /*0 Constant*/ /*3*/ 16'b0000000000000000, /*0 Constant*/
in_alu1_sel2, in_alu1_sel2,
ALU_1B); ALU_1B);
@ -132,7 +164,14 @@ wire [15:0] ALU_1B;
wire [15:0] ALU_1O; wire [15:0] ALU_1O;
reg [`ALU_OP_BITS-1:0]ALU_1OP; reg [`ALU_OP_BITS-1:0]ALU_1OP;
wire [7:0] ALU_1FLAGS; wire [7:0] ALU_1FLAGS;
ALU ALU1(ALU_1A,ALU_1B,ALU_1O,ALU_1OP,ALU_1FLAGS,Wbit); ALU ALU1(
.A(ALU_1A),
.B(ALU_1B),
.OUT(ALU_1O),
.op(ALU_1OP),
.FLAGS(ALU_1FLAGS),
.Wbit(Wbit)
);
/*############ Processor state machine ########################################################## */ /*############ Processor state machine ########################################################## */
@ -145,98 +184,19 @@ always @(negedge reset) begin
ProgCount=0;//TODO: Reset Vector ProgCount=0;//TODO: Reset Vector
HALT=0; HALT=0;
reg_write_we=1; reg_write_we=1;
unaligned_access=0; IOMEM=0;
@(posedge reset) @(posedge reset)
@(negedge clock); @(negedge clock);
state=`PROC_IF_STATE_ENTRY; state=`PROC_IF_STATE_ENTRY;
one_byte_instruction=0;
ERROR=0; ERROR=0;
SIMPLE_MICRO=0; SIMPLE_MICRO=0;
instruction_size_init=1;
end end
end end
/*** Processor stages ***/ /*** Processor stages ***/
`define invalid_instruction state=`PROC_IF_STATE_ENTRY;ERROR=1; `define invalid_instruction state=`PROC_IF_STATE_ENTRY;ERROR=1;
always @(negedge clock) begin
case(state)
`PROC_IF_WRITE_CIR:begin
if(unaligned_access)begin
if(one_byte_instruction==1)begin /*TODO: have a read buffer so we can do this even with data reads */
CIR <= {CIR[7:0],external_data_bus[15:8]};
state=`PROC_DE_STATE_ENTRY;
end else begin
CIR[15:8] <= external_data_bus[7:0];
state=`PROC_IF_STATE_EXTRA_FETCH_SET;
end
end else begin
CIR <= external_data_bus;
ProgCount=ProgCount+1;
state=`PROC_DE_STATE_ENTRY;
end
end
`PROC_IF_STATE_EXTRA_FETCH:begin
CIR[7:0] <= external_data_bus[15:8];
state=`PROC_DE_STATE_ENTRY;
end
`PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin
external_address_bus = ProgCount;
state=`PROC_DE_LOAD_16_EXTRA_FETCH;
end
`PROC_MEMIO_READ_SETADDR:begin
external_address_bus = {5'b00000,reg_read_port1_data[15:1]};
state=reg_read_port1_data[0:0]?`PROC_MEMIO_GET_UNALIGNED_DATA:`PROC_MEMIO_GET_ALIGNED_DATA;
end
`PROC_MEMIO_PUT_BYTE:begin
BYTE_WRITE_TEMP_REG=external_data_bus;
state=`PROC_MEMIO_PUT_BYTE_STOP_READ;
end
`PROC_MEMIO_WRITE_EXIT:begin
write=0;
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state=`PROC_IF_STATE_ENTRY;
else
state=`PROC_NEXT_MICROCODE;
end
`PROC_MEMIO_PUT_ALIGNED_DATA:begin
read=1;
data_bus_output_register={ALU_1O[7:0],ALU_1O[15:8]};
state=`PROC_MEMIO_WRITE_EXIT;
end
`PROC_MEMIO_PUT_UNALIGNED_DATA:begin
BYTE_WRITE_TEMP_REG=external_data_bus;
state=`PROC_MEMIO_PUT_UNALIGNED_FIRST_BYTE;
end
`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT:begin
write=0;
state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2;
data_bus_output_register={BYTE_WRITE_TEMP_REG[15:8],ALU_1O[7:0]};
end
`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT3:begin
BYTE_WRITE_TEMP_REG=external_data_bus;
state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT4;
end
`PROC_MEMIO_GET_SECOND_BYTE:begin
external_address_bus=external_address_bus+1;
state=`PROC_MEMIO_GET_SECOND_BYTE1;
end
`PROC_DE_LOAD_8_PARAM_UNALIGNED:begin
if({Sbit,Wbit}==2'b11)begin
PARAM1 = {{8{external_data_bus[15:15]}},external_data_bus[15:8]};
end else begin
PARAM1[7:0] = external_data_bus[15:8];
end
case(IN_MOD)
3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ;
default: state=`PROC_EX_STATE_ENTRY;
endcase
end
default:begin
end
endcase
end
always @(posedge clock) begin always @(posedge clock) begin
case(state) case(state)
`PROC_HALT_STATE:begin `PROC_HALT_STATE:begin
@ -247,34 +207,71 @@ always @(posedge clock) begin
* testbench stop the clock after ERROR gets * testbench stop the clock after ERROR gets
* raised the logic for the rising edge still * raised the logic for the rising edge still
* gets triggered printing this debug message. */ * gets triggered printing this debug message. */
if(ERROR!=1) if(ERROR!=1)begin
$display("Fetched instruction at %04x",{ProgCount[18:0],unaligned_access}); if(instruction_size==1)
$display("Fetched instruction at %0x",ProgCount - 1);
else
$display("Fetched instruction at %0x",ProgCount - 0);
end
`endif `endif
BHE = 0;
external_address_bus = ProgCount; external_address_bus = ProgCount;
read = 0; read = 0;
write = 1; write = 1;
reg_write_we=1; reg_write_we=1;
state=`PROC_IF_WRITE_CIR; state=`PROC_IF_WRITE_CIR;
reg_write_in_sel=2'b00; reg_write_in_sel=2'b00;
we_jumped=0; end
`PROC_IF_WRITE_CIR:begin
/*I built the entire decode stage with CIR
* being big endian so just convert it here*/
if(instruction_size==1)begin
/*Half on CIR half on this address */
state=`PROC_DE_STATE_ENTRY;
if(ProgCount[0:0]==1)begin
CIR = {CIR[7:0],external_data_bus[15:8]};
end else begin
CIR = {CIR[7:0],external_data_bus[7:0]};
end
ProgCount=ProgCount+1;
end else begin
if(ProgCount[0:0]==1)begin
/* Half on this address half on the next*/
ProgCount=ProgCount+1;
CIR[15:8] <= external_data_bus[15:8];
state=`PROC_IF_STATE_EXTRA_FETCH_SET;
end else begin
/* Both on this address! */
ProgCount=ProgCount+2;
CIR <= {external_data_bus[7:0],external_data_bus[15:8]};
state=`PROC_DE_STATE_ENTRY;
end
end
end end
`PROC_IF_STATE_EXTRA_FETCH_SET:begin `PROC_IF_STATE_EXTRA_FETCH_SET:begin
ProgCount=ProgCount+1;
external_address_bus = ProgCount; external_address_bus = ProgCount;
BHE=0;
state=`PROC_IF_STATE_EXTRA_FETCH; state=`PROC_IF_STATE_EXTRA_FETCH;
end end
`PROC_IF_STATE_EXTRA_FETCH:begin
CIR[7:0] <= external_data_bus[7:0];
ProgCount=ProgCount+1;
state=`PROC_DE_STATE_ENTRY;
end
`PROC_DE_STATE_ENTRY:begin `PROC_DE_STATE_ENTRY:begin
/* If we are unaligned, the address bus contains the
* ProgCount and points to the second word containing
* the next unread byte in external_data_bus[7:0]. If
* we are aligned the address bus points to the first
* word of the instruction which contains no useful
* data anymore but the ProgCount has the correct
* address so update it now so that whatever the case
* external_data_bus contains at least some unknown data */
one_byte_instruction=(!has_operands)&&(!opcode_size);
external_address_bus = ProgCount; external_address_bus = ProgCount;
if(SIMPLE_MICRO==0)begin if(SIMPLE_MICRO==0)begin
/*This flag is set at reset and jump because
* at IF we need to know the size of the
* previous instruction (specificly if it was
* a single byte and the value would be
* incorrect in both cases. So when it gets
* set reset it only at the start of the next
* 8086 instruction */
instruction_size_init=0;
/* We cannot set these directly within /* We cannot set these directly within
* microcode so don't overwrite useful values * microcode so don't overwrite useful values
* each time the next microcode is executed. * each time the next microcode is executed.
@ -299,7 +296,10 @@ always @(posedge clock) begin
end end
`PROC_DE_LOAD_REG_TO_PARAM:begin `PROC_DE_LOAD_REG_TO_PARAM:begin
PARAM2=reg_read_port2_data; PARAM2=reg_read_port2_data;
state=`PROC_EX_STATE_ENTRY; case(IN_MOD)
3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ;
default: state=`PROC_EX_STATE_ENTRY;
endcase
end end
`PROC_DE_LOAD_8_PARAM:begin `PROC_DE_LOAD_8_PARAM:begin
if(opcode_size==0)begin if(opcode_size==0)begin
@ -314,44 +314,49 @@ always @(posedge clock) begin
default: state=`PROC_EX_STATE_ENTRY; default: state=`PROC_EX_STATE_ENTRY;
endcase endcase
end else begin end else begin
if(unaligned_access==1)begin if(ProgCount[0:0]==1)begin
if({Sbit,Wbit}==2'b11)begin
/*signed "16bit" read*/
PARAM1 = {{8{external_data_bus[15:15]}},external_data_bus[15:8]};
end else begin
PARAM1[7:0] = external_data_bus[15:8];
end
end else begin
if({Sbit,Wbit}==2'b11)begin if({Sbit,Wbit}==2'b11)begin
/*signed "16bit" read*/ /*signed "16bit" read*/
PARAM1 = {{8{external_data_bus[7:7]}},external_data_bus[7:0]}; PARAM1 = {{8{external_data_bus[7:7]}},external_data_bus[7:0]};
end else begin end else begin
PARAM1[7:0] = external_data_bus[7:0]; PARAM1[7:0] = external_data_bus[7:0];
end end
end
ProgCount=ProgCount+1; ProgCount=ProgCount+1;
case(IN_MOD) case(IN_MOD)
3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ; 3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ;
default: state=`PROC_EX_STATE_ENTRY; default: state=`PROC_EX_STATE_ENTRY;
endcase endcase
end else begin
external_address_bus=ProgCount;
state=`PROC_DE_LOAD_8_PARAM_UNALIGNED;
end
end end
end end
`PROC_DE_LOAD_16_PARAM:begin `PROC_DE_LOAD_16_PARAM:begin
if(opcode_size==0)begin if(opcode_size==0)begin
if(unaligned_access==1)begin PARAM1[7:0] = CIR[7:0];
PARAM1 = {external_data_bus[7:0],external_data_bus[15:8]}; if(ProgCount[0:0]==1)begin
ProgCount=ProgCount+1; PARAM1[15:8] = external_data_bus[15:8];
end else begin end else begin
PARAM1 = {external_data_bus[15:8],CIR[7:0]}; PARAM1[15:8] = external_data_bus[7:0];
end end
ProgCount=ProgCount+1;
case(IN_MOD) case(IN_MOD)
3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ; 3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ;
default: state=`PROC_EX_STATE_ENTRY; default: state=`PROC_EX_STATE_ENTRY;
endcase endcase
end else begin end else begin
if(ProgCount[0:0]==1)begin
ProgCount=ProgCount+1; ProgCount=ProgCount+1;
if(unaligned_access==1)begin PARAM1[7:0] = external_data_bus[15:8];
PARAM1[7:0] = external_data_bus[7:0];
state=`PROC_DE_LOAD_16_EXTRA_FETCH_SET; state=`PROC_DE_LOAD_16_EXTRA_FETCH_SET;
end else begin end else begin
PARAM1 = {external_data_bus[7:0],external_data_bus[15:8]}; PARAM1 = external_data_bus;
ProgCount=ProgCount+2;
case(IN_MOD) case(IN_MOD)
3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ; 3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ;
default: state=`PROC_EX_STATE_ENTRY; default: state=`PROC_EX_STATE_ENTRY;
@ -359,8 +364,13 @@ always @(posedge clock) begin
end end
end end
end end
`PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin
external_address_bus = ProgCount;
state=`PROC_DE_LOAD_16_EXTRA_FETCH;
end
`PROC_DE_LOAD_16_EXTRA_FETCH:begin `PROC_DE_LOAD_16_EXTRA_FETCH:begin
PARAM1[15:8] = external_data_bus[15:8]; ProgCount=ProgCount+1;
PARAM1[15:8] = external_data_bus[7:0];
case(IN_MOD) case(IN_MOD)
3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ; 3'b000,3'b001,3'b010: state=`PROC_MEMIO_READ;
default: state=`PROC_EX_STATE_ENTRY; default: state=`PROC_EX_STATE_ENTRY;
@ -422,27 +432,34 @@ always @(posedge clock) begin
`invalid_instruction `invalid_instruction
end end
endcase endcase
end
`PROC_MEMIO_READ_SETADDR:begin
external_address_bus = {5'b0000,reg_read_port1_data[15:0]};
state=reg_read_port1_data[0:0]?`PROC_MEMIO_GET_UNALIGNED_DATA:`PROC_MEMIO_GET_ALIGNED_DATA;
end end
`PROC_MEMIO_GET_ALIGNED_DATA:begin `PROC_MEMIO_GET_ALIGNED_DATA:begin
PARAM2=(Wbit==1)? {external_data_bus[7:0],external_data_bus[15:8]} : {8'b00000000,external_data_bus[15:8]} ; PARAM2=(Wbit==1)? external_data_bus : {8'b00000000,external_data_bus[7:0]} ;
state=`PROC_EX_STATE_ENTRY; state=`PROC_EX_STATE_ENTRY;
end end
`PROC_MEMIO_GET_UNALIGNED_DATA:begin `PROC_MEMIO_GET_UNALIGNED_DATA:begin
PARAM2={8'b00000000,external_data_bus[7:0]}; PARAM2={8'b00000000,external_data_bus[15:8]};
if(Wbit==1) begin if(Wbit==1) begin
state=`PROC_MEMIO_GET_SECOND_BYTE; state=`PROC_MEMIO_GET_SECOND_BYTE;
end else begin end else begin
state=`PROC_EX_STATE_ENTRY; state=`PROC_EX_STATE_ENTRY;
end end
end end
`PROC_MEMIO_GET_SECOND_BYTE:begin
external_address_bus=external_address_bus+1;
state=`PROC_MEMIO_GET_SECOND_BYTE1;
end
`PROC_MEMIO_GET_SECOND_BYTE1:begin
PARAM2[15:8]=external_data_bus[7:0];
state=`PROC_EX_STATE_ENTRY;
end
`PROC_EX_STATE_ENTRY:begin `PROC_EX_STATE_ENTRY:begin
FLAGS[7:0] = ALU_1FLAGS[7:0]; //TODO, we should probably move all the ...STATE_EXIT stuff here external_address_bus = ProgCount;
/*Don't update the unaligned_access for Instruction FLAGS[7:0] = ALU_1FLAGS[7:0];
* Fetch if we are doing microcode execution, it will
* be done by decode at the end*/
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
unaligned_access=unaligning_instruction^unaligned_access;
case(OUT_MOD) case(OUT_MOD)
3'b000, 3'b000,
3'b001, 3'b001,
@ -499,9 +516,8 @@ always @(posedge clock) begin
state=`PROC_NEXT_MICROCODE; state=`PROC_NEXT_MICROCODE;
end end
3'b101:begin /* Program Counter*/ 3'b101:begin /* Program Counter*/
ProgCount={5'b00000,ALU_1O[15:1]}; ProgCount={5'b0000,ALU_1O[15:0]};
unaligned_access=ALU_1O[0:0]; instruction_size_init=1;
we_jumped=1;
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state=`PROC_IF_STATE_ENTRY; state=`PROC_IF_STATE_ENTRY;
else else
@ -521,45 +537,54 @@ always @(posedge clock) begin
`ifdef DEBUG_MEMORY_WRITES `ifdef DEBUG_MEMORY_WRITES
$display("Writing at %04x , %04x",reg_read_port1_data,ALU_1O); $display("Writing at %04x , %04x",reg_read_port1_data,ALU_1O);
`endif `endif
external_address_bus = {5'b00000,reg_read_port1_data[15:1]}; external_address_bus = {5'b0000,reg_read_port1_data[15:0]};
state = (Wbit==0) ? `PROC_MEMIO_PUT_BYTE : (reg_read_port1_data[0:0]?`PROC_MEMIO_PUT_UNALIGNED_DATA:`PROC_MEMIO_PUT_ALIGNED_DATA) ; state = (Wbit==0) ? `PROC_MEMIO_PUT_BYTE : (reg_read_port1_data[0:0]?`PROC_MEMIO_PUT_UNALIGNED_16BIT_DATA:`PROC_MEMIO_PUT_ALIGNED_16BIT_DATA) ;
end end
`PROC_MEMIO_PUT_BYTE_STOP_READ:begin `PROC_MEMIO_PUT_UNALIGNED_16BIT_DATA:begin
read=1;
state=`PROC_MEMIO_WRITE_EXIT;
if(reg_read_port1_data[0:0]==0)
data_bus_output_register={ALU_1O[7:0],BYTE_WRITE_TEMP_REG[7:0]};
else
data_bus_output_register={BYTE_WRITE_TEMP_REG[15:8],ALU_1O[7:0]};
end
`PROC_MEMIO_PUT_UNALIGNED_FIRST_BYTE:begin
read=1; read=1;
BHE=0;
data_bus_output_register={ALU_1O[7:0],ALU_1O[15:8]};
state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT; state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT;
data_bus_output_register={BYTE_WRITE_TEMP_REG[15:8],ALU_1O[7:0]}; end
`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT:begin
write=0;
state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2;
end end
`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2:begin `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2:begin
external_address_bus=external_address_bus+1;
write=1; write=1;
read=0; external_address_bus=external_address_bus+1;
state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT3; BHE=1;
state=`PROC_MEMIO_WRITE_EXIT;
end end
`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT4:begin `PROC_MEMIO_PUT_ALIGNED_16BIT_DATA:begin
read=1;
data_bus_output_register={ALU_1O[15:8],ALU_1O[7:0]};
state=`PROC_MEMIO_WRITE_EXIT;
end
`PROC_MEMIO_PUT_BYTE:begin
read=1; read=1;
state=`PROC_MEMIO_WRITE_EXIT; state=`PROC_MEMIO_WRITE_EXIT;
data_bus_output_register={ALU_1O[15:8],BYTE_WRITE_TEMP_REG[7:0]}; if(reg_read_port1_data[0:0]==0) begin
BHE=1;
data_bus_output_register={8'b0,ALU_1O[7:0]};
end else begin
data_bus_output_register={ALU_1O[7:0],8'b0};
end end
`PROC_MEMIO_GET_SECOND_BYTE1:begin end
PARAM2[15:8]=external_data_bus[15:8]; `PROC_MEMIO_WRITE_EXIT:begin
state=`PROC_EX_STATE_ENTRY; write=0;
if (ucode_seq_addr==`UCODE_NO_INSTRUCTION)
state=`PROC_IF_STATE_ENTRY;
else
state=`PROC_NEXT_MICROCODE;
end end
`PROC_NEXT_MICROCODE:begin `PROC_NEXT_MICROCODE:begin
read=0; read=0;
write=1; // maybe we are coming from MEMIO_WRITE write=1; // maybe we are coming from MEMIO_WRITE
BHE=0;
ucode_seq_addr=ucode_seq_addr_entry; /*Reused for next address*/ ucode_seq_addr=ucode_seq_addr_entry; /*Reused for next address*/
if( ucode_seq_addr == `UCODE_NO_INSTRUCTION )begin if( ucode_seq_addr == `UCODE_NO_INSTRUCTION )begin
/*Finished microcode*/ /*Finished microcode*/
if(we_jumped==0)
unaligned_access=unaligning_instruction^unaligned_access;
SIMPLE_MICRO=0; SIMPLE_MICRO=0;
state=`PROC_IF_STATE_ENTRY; state=`PROC_IF_STATE_ENTRY;
end else begin end else begin

View File

@ -27,9 +27,10 @@ wire [19:0]address_bus;
wire [15:0]data_bus; wire [15:0]data_bus;
wire rd,wr,romcs,HALT; wire rd,wr,romcs,HALT;
wire ERROR; wire ERROR;
wire IOMEM;
processor p(clock,reset,address_bus,data_bus,rd,wr,HALT,ERROR); processor p(clock,reset,address_bus,data_bus,rd,wr,BHE,IOMEM,HALT,ERROR);
mem sysmem(address_bus,data_bus,rd,wr,romcs); doublemem sysmem(address_bus,data_bus,rd,wr,BHE,IOMEM);
`define CPU_SPEED 1000 `define CPU_SPEED 1000