First/cpu.c

744 lines
23 KiB
C

#include "simdata.h"
#include "cpu.h"
#include <stdlib.h>
#include <math.h>
#include <string.h>
struct fetch_data_t *malloc_fetch_data(){
struct fetch_data_t *ret=malloc(sizeof(struct fetch_data_t));
ret->wait_for_exec=0;
ret->exec_done=1;
ret->decode_done=1;
ret->fetch_wait=0;
return ret;
}
void free_fetch_data(struct fetch_data_t *tofree){
free(tofree);
}
int fetch(struct simdata_t *simdata){
free_instr_list(&simdata->cpu_gui_hints->fetching_list);
if(simdata->fetch_data->wait_for_exec!=0){
simdata->fetch_data->fetch_wait=1;
simdata->decode_data->valid=0;
simdata->fetch_data->wait_for_exec=0;
return 0;
}
if(simdata->fetch_data->fetch_wait){
if(simdata->fetch_data->exec_done){
simdata->fetch_data->fetch_wait=0;
}else
return 0;
}
if(!simdata->fetch_data->decode_done)
return 0;
simdata->decode_data->in_bytecode=(uint32_t)(simdata->RAM[simdata->registers->PC])<<24|(uint32_t)(simdata->RAM[simdata->registers->PC+1])<<16|(uint32_t)(simdata->RAM[simdata->registers->PC+2])<<8|(uint32_t)(simdata->RAM[simdata->registers->PC+3]);
simdata->decode_data->valid=1;
simdata->decode_data->address=simdata->registers->PC;
add_to_instr_list(&simdata->cpu_gui_hints->fetching_list,simdata->registers->PC);
simdata->registers->PC+=4;
return 0;
}
struct decode_data_t *malloc_decode_data(){
struct decode_data_t *ret=malloc(sizeof(struct decode_data_t));
if(ret)
ret->valid=0;
ret->exec_done=1;
return ret;
}
void free_decode_data(struct decode_data_t *tofree){
free(tofree);
}
int decode(struct simdata_t *simdata){
uint16_t opcode,op1,op2,imm;
free_instr_list(&simdata->cpu_gui_hints->decoding_list);
if(simdata->decode_data->exec_done==0){
simdata->fetch_data->decode_done=0;
return 0;
}
if(simdata->decode_data->valid==0){
simdata->exec_data->valid=0;
simdata->fetch_data->decode_done=1;
return 0;
}
switch((simdata->decode_data->in_bytecode&0xE0000000)>>29){
case 0:
opcode=(simdata->decode_data->in_bytecode&0x1F000000)>>24;
switch(opcode){
case 0x00:
simdata->exec_data->EXEC_ACTION=NOP;
break;
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
switch(opcode){
case 0x01: case 0x11: simdata->exec_data->COND=COND_NONE; break;
case 0x02: case 0x12: simdata->exec_data->COND=COND_ZERO; break;
case 0x03: case 0x13: simdata->exec_data->COND=COND_NZERO; break;
case 0x04: case 0x14: simdata->exec_data->COND=COND_CARRY; break;
case 0x05: case 0x15: simdata->exec_data->COND=COND_NCARRY; break;
default: return 1;
}
simdata->exec_data->out_op->OP_ADDR=IMMEDIATE;
simdata->exec_data->out_op->data=simdata->decode_data->in_bytecode&0x00FFFFFF;
simdata->exec_data->EXEC_ACTION=(opcode&0x10)?CALL:JUMP;
simdata->fetch_data->wait_for_exec=1;
break;
case 0x0F:/* load SP */
simdata->exec_data->EXEC_ACTION=MOVE;
simdata->exec_data->in_op1->OP_ADDR=IMMEDIATE;
simdata->exec_data->in_op1->data=simdata->decode_data->in_bytecode&0x00FFFFFF;
simdata->exec_data->out_op->OP_ADDR=REGISTER;
simdata->exec_data->out_op->data=0xFF;
break;
case 0x10:
simdata->exec_data->EXEC_ACTION=RET;
simdata->fetch_data->wait_for_exec=1;
break;
default:
return 1;
}
break;
case 1:
opcode=(simdata->decode_data->in_bytecode&0x1FFF0000)>>16;
op1=(simdata->decode_data->in_bytecode&0x0000FF00)>>8;
op2=(simdata->decode_data->in_bytecode&0x000000FF);
simdata->exec_data->in_op1->data=op1;
simdata->exec_data->in_op2->data=op2;
switch(opcode){
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x0A:
case 0x0B:
case 0x0C:
case 0x0D:
case 0x0E:
case 0x0F:
case 0x10:
case 0x11:
case 0x12:
simdata->exec_data->in_op1->OP_ADDR=REGISTER;
simdata->exec_data->in_op2->OP_ADDR=REGISTER;
break;
case 0x08:
simdata->exec_data->in_op1->OP_ADDR=REGISTER;
simdata->exec_data->in_op2->OP_ADDR=REGISTER_IND;
break;
case 0x09:
simdata->exec_data->in_op1->OP_ADDR=REGISTER_IND;
simdata->exec_data->in_op2->OP_ADDR=REGISTER;
break;
}
switch(opcode){
case 0x05:
simdata->exec_data->EXEC_ACTION=HALT;
break;
case 0x06:
simdata->exec_data->EXEC_ACTION=PUSH;
break;
case 0x07:
simdata->exec_data->EXEC_ACTION=POP;
break;
case 0x08:
case 0x09:
case 0x12:
simdata->exec_data->EXEC_ACTION=MOVE;
break;
default:
simdata->exec_data->EXEC_ACTION=EXEC_ALU;
break;
}
switch(opcode){
case 0x00:
case 0x01:
case 0x04:
case 0x0A:
case 0x0B:
case 0x0C:
case 0x0D:
case 0x12:
simdata->exec_data->out_op->OP_ADDR=REGISTER;
simdata->exec_data->out_op->data=op2;
break;
case 0x02:
case 0x03:
case 0x0E:
case 0x0F:
case 0x10:
case 0x11:
simdata->exec_data->out_op->OP_ADDR=REGISTER;
simdata->exec_data->out_op->data=op1;
break;
case 0x08:
simdata->exec_data->out_op->data=op2;
simdata->exec_data->out_op->OP_ADDR=REGISTER_IND;
break;
case 0x09:
simdata->exec_data->out_op->data=op2;
simdata->exec_data->out_op->OP_ADDR=REGISTER;
break;
}
switch(opcode){
case 0x00: simdata->exec_data->ALU_OP=ALU_ADD; break;
case 0x01: simdata->exec_data->ALU_OP=ALU_SUB; break;
case 0x02: simdata->exec_data->ALU_OP=ALU_SL; break;
case 0x03: simdata->exec_data->ALU_OP=ALU_SR; break;
case 0x04: simdata->exec_data->ALU_OP=ALU_CMP; break;
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x12:
break;
case 0x0A: simdata->exec_data->ALU_OP=ALU_FDIV; break;
case 0x0B: simdata->exec_data->ALU_OP=ALU_FMUL; break;
case 0x0C: simdata->exec_data->ALU_OP=ALU_FADD; break;
case 0x0D: simdata->exec_data->ALU_OP=ALU_FSUB; break;
case 0x0E: simdata->exec_data->ALU_OP=ALU_FSIN; break;
case 0x0F: simdata->exec_data->ALU_OP=ALU_FCOS; break;
case 0x10: simdata->exec_data->ALU_OP=ALU_DEC; break;
case 0x11: simdata->exec_data->ALU_OP=ALU_INC; break;
default:
return 1;
}
break;
case 2:
opcode=(simdata->decode_data->in_bytecode&0x1F000000)>>24;
op1=(simdata->decode_data->in_bytecode&0x00FF0000)>>16;
imm=(simdata->decode_data->in_bytecode&0x0000FFFF);
switch(opcode){
case 0:
simdata->exec_data->EXEC_ACTION=MOVE;
simdata->exec_data->in_op1->OP_ADDR=IMMEDIATE;
simdata->exec_data->in_op1->data=imm;
simdata->exec_data->out_op->OP_ADDR=REGISTERL;
simdata->exec_data->out_op->data=op1;
break;
case 1:
simdata->exec_data->EXEC_ACTION=MOVE;
simdata->exec_data->in_op1->OP_ADDR=IMMEDIATE;
simdata->exec_data->in_op1->data=imm;
simdata->exec_data->out_op->OP_ADDR=REGISTERH;
simdata->exec_data->out_op->data=op1;
break;
}
break;
default:
return 1;
}
simdata->fetch_data->decode_done=1;
simdata->exec_data->valid=1;
simdata->exec_data->address=simdata->decode_data->address;
add_to_instr_list(&simdata->cpu_gui_hints->decoding_list,simdata->decode_data->address);
return 0;
}
struct exec_data_t *malloc_exec_data(){
struct exec_data_t *ret;
ret=malloc(sizeof(struct exec_data_t));
if(!ret)
return 0;
ret->in_op1=malloc(sizeof(struct exec_op_t));
if(!ret->in_op1){
free(ret);
return 0;
}
ret->in_op2=malloc(sizeof(struct exec_op_t));
if(!ret->in_op2){
free(ret->in_op1);
free(ret);
return 0;
}
ret->out_op=malloc(sizeof(struct exec_op_t));
if(!ret->out_op){
free(ret->in_op1);
free(ret->in_op2);
free(ret);
return 0;
}
ret->valid=0;
ret->cycles_left=0;
return ret;
}
void free_exec_data(struct exec_data_t *tofree){
free(tofree->in_op1);
free(tofree->in_op2);
free(tofree->out_op);
free(tofree);
}
#define RR_SIMPL_INDX 0
#define RR_COMPLX_INDX 1
#define RR_FCOMPLX_INDX 2
#define MEM_ACCS_INDX 3
#define IMM_LOAD_INDX 4
#define BRNCH_MISS_INDX 5
#define BRNCH_TAKN_INDX 6
#define BRNCH_UNCO_INDX 7
#define CALL_RET_INDX 8
#define RR_FTRI_INDX 9
#define RR_MOVE_INDX 10
int delay_values[]={
1, // register-register (integer) add,sub,inc,dec,shift left/right float add,sub
4, // register-register integer multiply, divide
4, // register-register float multiply, divide
2, // push / pop / read mem / write mem
1, // immediate to register
1, // branch not taken
3, // branch taken
3, // branch unconditional
4, // call/ret
4, // float sin/cos
1 // register-register move
};
int exec(struct simdata_t *simdata){
free_instr_list(&simdata->cpu_gui_hints->executing_list);
if(simdata->exec_data->valid==1){
simdata->fetch_data->exec_done=0;
simdata->decode_data->exec_done=0;
}
if(simdata->exec_data->cycles_left==0){
if(simdata->exec_data->valid==0)
return 0;
int condition=0;
switch(simdata->exec_data->EXEC_ACTION){
case CALL:
case JUMP:
switch(simdata->exec_data->COND){
case COND_NONE: condition=1; break;
case COND_ZERO: condition=simdata->registers->FLAGS&1; break;
case COND_NZERO: condition=!(simdata->registers->FLAGS&1); break;
case COND_CARRY: condition=simdata->registers->FLAGS&2; break;
case COND_NCARRY: condition=!(simdata->registers->FLAGS&2); break;
}
switch(simdata->exec_data->COND){
case COND_NONE:
simdata->exec_data->cycles_left=delay_values[BRNCH_UNCO_INDX];
break;
default:
if(condition)
simdata->exec_data->cycles_left=delay_values[BRNCH_TAKN_INDX];
else
simdata->exec_data->cycles_left=delay_values[BRNCH_MISS_INDX];
break;
}
if(condition){
if(simdata->exec_data->EXEC_ACTION==CALL){
*(uint32_t*)(simdata->RAM+simdata->registers->SP)=simdata->registers->PC;
simdata->registers->SP+=4;
}
if(simdata->exec_data->out_op->OP_ADDR==IMMEDIATE)
simdata->registers->PC=(uint32_t)(simdata->exec_data->out_op->data);
else
return 1;
}
break;
case RET:
simdata->exec_data->cycles_left=delay_values[CALL_RET_INDX];
simdata->registers->SP-=4;
simdata->registers->PC=simdata->RAM[simdata->registers->SP];
break;
case EXEC_ALU:
if( simdata->exec_data->in_op1->OP_ADDR==REGISTER &&
simdata->exec_data->in_op2->OP_ADDR==REGISTER &&
simdata->exec_data->out_op->OP_ADDR==REGISTER ){
uint32_t result;
switch(simdata->exec_data->ALU_OP){
case ALU_ADD:
result = simdata->registers->GPR[simdata->exec_data->in_op1->data] +
simdata->registers->GPR[simdata->exec_data->in_op2->data];
simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)|
(simdata->registers->GPR[simdata->exec_data->out_op->data] < simdata->registers->GPR[simdata->exec_data->in_op1->data])<<1;
simdata->exec_data->cycles_left=delay_values[RR_SIMPL_INDX];
break;
case ALU_SUB:
case ALU_CMP:
result = simdata->registers->GPR[simdata->exec_data->in_op2->data] -
simdata->registers->GPR[simdata->exec_data->in_op1->data];
simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)|
(simdata->registers->GPR[simdata->exec_data->out_op->data] > simdata->registers->GPR[simdata->exec_data->in_op1->data])<<1;
simdata->exec_data->cycles_left=delay_values[RR_SIMPL_INDX];
break;
case ALU_SL:
simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)|
((simdata->registers->GPR[simdata->exec_data->in_op1->data]&0x80000000)?2:0);
result = simdata->registers->GPR[simdata->exec_data->in_op1->data]<<1;
simdata->exec_data->cycles_left=delay_values[RR_SIMPL_INDX];
break;
case ALU_SR:
simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)|
((simdata->registers->GPR[simdata->exec_data->in_op1->data]&0x00000001)?2:0);
result = simdata->registers->GPR[simdata->exec_data->in_op1->data]>>1;
simdata->exec_data->cycles_left=delay_values[RR_SIMPL_INDX];
break;
case ALU_FDIV:
result = ieee754_float_to_uint32(uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op2->data])/
uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op1->data]));
simdata->exec_data->cycles_left=delay_values[RR_COMPLX_INDX];
break;
case ALU_FMUL:
result = ieee754_float_to_uint32(uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op1->data])*
uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op2->data]));
simdata->exec_data->cycles_left=delay_values[RR_COMPLX_INDX];
break;
case ALU_FADD:
result = ieee754_float_to_uint32(uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op2->data])+
uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op1->data]));
simdata->exec_data->cycles_left=delay_values[RR_SIMPL_INDX];
break;
case ALU_FSUB:
result = ieee754_float_to_uint32(uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op2->data])-
uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op1->data]));
simdata->exec_data->cycles_left=delay_values[RR_SIMPL_INDX];
break;
case ALU_FSIN:
result = ieee754_float_to_uint32(sinf(uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op1->data])));
simdata->exec_data->cycles_left=delay_values[RR_FTRI_INDX];
break;
case ALU_FCOS:
result = ieee754_float_to_uint32(cosf(uint32_to_ieee754_float(simdata->registers->GPR[simdata->exec_data->in_op1->data])));
simdata->exec_data->cycles_left=delay_values[RR_FTRI_INDX];
break;
case ALU_DEC:
*(uint32_t*)&result = *(uint32_t*)(&simdata->registers->GPR[simdata->exec_data->in_op1->data])-1;
simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)|
(simdata->registers->GPR[simdata->exec_data->out_op->data] > simdata->registers->GPR[simdata->exec_data->in_op1->data])<<1;
simdata->exec_data->cycles_left=delay_values[RR_FCOMPLX_INDX];
break;
case ALU_INC:
*(uint32_t*)&result = *(uint32_t*)(&simdata->registers->GPR[simdata->exec_data->in_op1->data])+1;
simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)|
(simdata->registers->GPR[simdata->exec_data->out_op->data] > simdata->registers->GPR[simdata->exec_data->in_op1->data])<<1;
simdata->exec_data->cycles_left=delay_values[RR_SIMPL_INDX];
break;
default:
return 1;
}
simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFE)|(result==0);
if(simdata->exec_data->ALU_OP!=ALU_CMP)
simdata->registers->GPR[simdata->exec_data->out_op->data]=result;
}else
return 1;
break;
case MOVE:
switch(simdata->exec_data->out_op->OP_ADDR){
case REGISTERL:
if(simdata->exec_data->in_op1->OP_ADDR==IMMEDIATE){
simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0xFFFF0000)|(0x0000FFFF&
simdata->exec_data->in_op1->data);
simdata->exec_data->cycles_left=delay_values[IMM_LOAD_INDX];
}else{
//simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0xFFFF0000)|(0x0000FFFF&
// simdata->registers->GPR[simdata->exec_data->in_op1->data]);
//simdata->exec_data->cycles_left=
return 1;
}
break;
case REGISTERH:
if(simdata->exec_data->in_op1->OP_ADDR==IMMEDIATE){
simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0x0000FFFF)|((0x0000FFFF&
simdata->exec_data->in_op1->data)<<16);
simdata->exec_data->cycles_left=delay_values[IMM_LOAD_INDX];
}else{
//simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0x0000FFFF)|((0x0000FFFF&
// simdata->registers->GPR[simdata->exec_data->in_op1->data])<<16);
//simdata->exec_data->cycles_left=
return 1;
}
break;
case REGISTER: /* This is for special registers like the SP which is 24bits long */
if(simdata->exec_data->out_op->data==0xFF){
if(simdata->exec_data->in_op1->OP_ADDR==IMMEDIATE){
if( (simdata->exec_data->in_op1->data&0xFF000000) == 0 )
simdata->registers->SP=simdata->exec_data->in_op1->data;
else
return 2;
simdata->exec_data->cycles_left=delay_values[IMM_LOAD_INDX];
}else if( simdata->exec_data->in_op1->OP_ADDR==REGISTER ){ /*for completeion, not valid ( yet )*/
//if( (simdata->registers->GPR[simdata->exec_data->in_op1->data]&0xFF000000) == 0 )
// simdata->registers->SP=simdata->registers->GPR[simdata->exec_data->in_op1->data];
//else
// return 2;
return 1;
}
}else if(simdata->exec_data->in_op1->OP_ADDR==REGISTER_IND){
if( (simdata->registers->GPR[simdata->exec_data->in_op1->data]&0xFF000000) == 0 ){
simdata->registers->GPR[simdata->exec_data->out_op->data]=*(uint32_t*)(simdata->RAM+simdata->registers->GPR[simdata->exec_data->in_op1->data]);
simdata->exec_data->cycles_left=delay_values[MEM_ACCS_INDX];
}else
return 2;
}else if(simdata->exec_data->in_op1->OP_ADDR==REGISTER){
simdata->registers->GPR[simdata->exec_data->out_op->data]=simdata->registers->GPR[simdata->exec_data->in_op1->data];
simdata->exec_data->cycles_left=delay_values[RR_MOVE_INDX];
}else
return 1;
break;
case REGISTER_IND:
if(simdata->exec_data->in_op1->OP_ADDR==REGISTER){
*(uint32_t*)(simdata->RAM+(simdata->registers->GPR[simdata->exec_data->out_op->data]&0x00FFFFFF))=simdata->registers->GPR[simdata->exec_data->in_op1->data];
if(simdata->registers->GPR[simdata->exec_data->out_op->data]==0x00FFFFFC)
if(terminal_output(simdata->registers->GPR[simdata->exec_data->in_op1->data],simdata))
return 1;
simdata->exec_data->cycles_left=delay_values[MEM_ACCS_INDX];
}else
return 1;
break;
default:
return 1;
}
break;
case NOP:
simdata->exec_data->cycles_left=1;
break;
case HALT:
simdata->exec_data->cycles_left=1;
simdata->cpu_state=CPU_HALTED;
break;
case PUSH:
simdata->RAM[simdata->registers->SP ]=simdata->registers->GPR[simdata->exec_data->in_op1->data]&0x000000FF;
simdata->RAM[simdata->registers->SP+1]=(simdata->registers->GPR[simdata->exec_data->in_op1->data]&0x0000FF00)>>8;
simdata->RAM[simdata->registers->SP+2]=(simdata->registers->GPR[simdata->exec_data->in_op1->data]&0x00FF0000)>>16;
simdata->RAM[simdata->registers->SP+3]=(simdata->registers->GPR[simdata->exec_data->in_op1->data]&0xFF000000)>>24;
simdata->registers->SP+=4;
simdata->exec_data->cycles_left=delay_values[MEM_ACCS_INDX];
break;
case POP:
simdata->registers->SP-=4;
simdata->registers->GPR[simdata->exec_data->in_op1->data]=simdata->RAM[simdata->registers->SP];
simdata->registers->GPR[simdata->exec_data->in_op1->data]|=simdata->RAM[simdata->registers->SP+1]<<8;
simdata->registers->GPR[simdata->exec_data->in_op1->data]|=simdata->RAM[simdata->registers->SP+2]<<16;
simdata->registers->GPR[simdata->exec_data->in_op1->data]|=simdata->RAM[simdata->registers->SP+3]<<24;
simdata->exec_data->cycles_left=delay_values[MEM_ACCS_INDX];
break;
}
}
if(simdata->exec_data->cycles_left!=0)
simdata->exec_data->cycles_left--;
else
return 1;//internal error
if(simdata->exec_data->cycles_left==0){
simdata->fetch_data->exec_done=1;
simdata->decode_data->exec_done=1;
}
add_to_instr_list(&simdata->cpu_gui_hints->executing_list,simdata->exec_data->address);
return 0;
}
int state=0;
/*
* RETURN CODES:
* 0 : success
* 1 : error in execution stage
* 2 : error in decode stage
* 3 : error in fetch stage
* 4 : internal error
*/
int cpu_cycle_clock(struct simdata_t *simdata){
free_instr_list(&simdata->cpu_gui_hints->fetching_list);
free_instr_list(&simdata->cpu_gui_hints->decoding_list);
free_instr_list(&simdata->cpu_gui_hints->executing_list);
switch(exec(simdata)){
case 0: break;
case 2: return 4;
default: return 1;
}
switch(decode(simdata)){
case 0: break;
default: return 2;
}
switch(fetch(simdata)){
case 0: break;
default: return 3;
}
// switch(state){
// case 0:
// switch(fetch(simdata)){
// case 0: break;
// default: return 3;
// }
// break;
// case 1:
// switch(decode(simdata)){
// case 0: break;
// default: return 2;
// }
// break;
// case 2:
// switch(exec(simdata)){
// case 0: break;
// case 2: return 4;
// default: return 1;
// }
// break;
// }
// if(state==2)
// state=0;
// else
// state++;
simdata->current_clock++;
return 0;
}
int cpu_simdata_malloc(struct simdata_t *simdata){
simdata->fetch_data=malloc_fetch_data();
simdata->decode_data=malloc_decode_data();
simdata->exec_data=malloc_exec_data();
simdata->registers=malloc(sizeof(struct registers_t));
simdata->registers->PC=0x00000000;
simdata->registers->SP=0;
if((simdata->fetch_data!=NULL)&&(simdata->decode_data!=NULL)&&(simdata->exec_data!=NULL))
return 1;
else
return 0;
}
void cpu_simdata_free(struct simdata_t *simdata){
free_fetch_data(simdata->fetch_data);
free_decode_data(simdata->decode_data);
free_exec_data(simdata->exec_data);
free(simdata->registers);
}
char* EXEC_ACTION_t_to_string(enum EXEC_ACTION_t in){
char* ret;
switch(in){
case EXEC_ALU: ret="EXEC_ALU"; break;
case MOVE: ret="MOVE"; break;
case JUMP: ret="JUMP"; break;
case CALL: ret="CALL"; break;
case NOP: ret="NOP"; break;
case HALT: ret="HALT"; break;
case RET: ret="RET"; break;
case PUSH: ret="PUSH"; break;
case POP: ret="POP"; break;
default: ret="";
}
char *real_ret=malloc(9);
*real_ret=0;
strncpy(real_ret,ret,9);
return real_ret;
}
char* ALU_OP_t_to_string(enum ALU_OP_t in){
char* ret;
switch(in){
case ALU_ADD: ret="LU_ADD"; break;
case ALU_SUB: ret="LU_SUB"; break;
case ALU_SL: ret="LU_SL"; break;
case ALU_SR: ret="LU_SR"; break;
case ALU_CMP: ret="LU_CMP"; break;
case ALU_FDIV: ret="LU_FDIV"; break;
case ALU_FMUL: ret="LU_FMUL"; break;
case ALU_FADD: ret="LU_FADD"; break;
case ALU_FSUB: ret="LU_FSUB"; break;
case ALU_FSIN: ret="LU_FSIN"; break;
case ALU_FCOS: ret="LU_FCOS"; break;
case ALU_DEC: ret="LU_DEC"; break;
case ALU_INC: ret="LU_INC"; break;
default: ret="";
}
char *real_ret=malloc(8);
*real_ret=0;
strncpy(real_ret,ret,8);
return real_ret;
}
char* COND_t_to_string(enum COND_t in){
char* ret;
switch(in){
case COND_NONE: ret="COND_NONE"; break;
case COND_ZERO: ret="COND_ZERO"; break;
case COND_NZERO: ret="COND_NZERO"; break;
case COND_CARRY: ret="COND_CARRY"; break;
case COND_NCARRY: ret="COND_NCARRY"; break;
default: ret="";
}
char *real_ret=malloc(12);
*real_ret=0;
strncpy(real_ret,ret,12);
return real_ret;
}
char* OP_ADDR_t_to_string(enum OP_ADDR_t in){
char* ret;
switch(in){
case IMMEDIATE: ret="IMMEDIATE"; break;
case REGISTER: ret="REGISTER"; break;
case REGISTERL: ret="REGISTERL"; break;
case REGISTERH: ret="REGISTERH"; break;
case REGISTER_IND: ret="REGISTER_IND"; break;
default: ret="";
}
char *real_ret=malloc(13);
*real_ret=0;
strncpy(real_ret,ret,13);
return real_ret;
}