#include "simdata.h" #include "cpu.h" #include struct fetch_data_t *malloc_fetch_data(){ return NULL; } void free_fetch_data(__attribute__((unused)) struct fetch_data_t *tofree){ } int fetch(struct simdata_t *simdata){ simdata->decode_data->in_bytecode=(uint32_t)(simdata->RAM[simdata->PC])<<24|(uint32_t)(simdata->RAM[simdata->PC+1])<<16|(uint32_t)(simdata->RAM[simdata->PC+2])<<8|(uint32_t)(simdata->RAM[simdata->PC+3]); simdata->PC+=4; return 0; } struct decode_data_t *malloc_decode_data(){ return malloc(sizeof(struct decode_data_t)); } void free_decode_data(struct decode_data_t *tofree){ free(tofree); } int decode(struct simdata_t *simdata){ uint16_t opcode,op1,op2,imm; switch((simdata->decode_data->in_bytecode&0xE0000000)>>29){ case 0: opcode=(simdata->decode_data->in_bytecode&0x1F000000)>>24; switch(opcode){ case 1: simdata->exec_data->out_op->OP_ADDR=IMMEDIATE; simdata->exec_data->out_op->data=simdata->decode_data->in_bytecode&0x00FFFFFF; simdata->exec_data->EXEC_ACTION=JUMP; break; default: return 1; } break; case 1: opcode=(simdata->decode_data->in_bytecode&0x1FFF0000)>>16; op1=(simdata->decode_data->in_bytecode&0x0000FF00)>>8; op2=(simdata->decode_data->in_bytecode&0x000000FF); simdata->exec_data->in_op1->OP_ADDR=REGISTER; simdata->exec_data->in_op1->data=op1; simdata->exec_data->in_op2->OP_ADDR=REGISTER; simdata->exec_data->in_op2->data=op2; simdata->exec_data->EXEC_ACTION=EXEC_ALU; switch(opcode){ case 0: case 1: case 4: simdata->exec_data->out_op->OP_ADDR=REGISTER; simdata->exec_data->out_op->data=op2; break; case 2: case 3: simdata->exec_data->out_op->OP_ADDR=REGISTER; simdata->exec_data->out_op->data=op1; break; } switch(opcode){ case 0: simdata->exec_data->ALU_OP=ALU_ADD; break; case 1: simdata->exec_data->ALU_OP=ALU_SUB; break; case 2: simdata->exec_data->ALU_OP=ALU_SL; break; case 3: simdata->exec_data->ALU_OP=ALU_SR; break; case 4: simdata->exec_data->ALU_OP=ALU_CMP; break; default: return 1; } break; case 2: opcode=(simdata->decode_data->in_bytecode&0x1F000000)>>24; op1=(simdata->decode_data->in_bytecode&0x00FF0000)>>16; imm=(simdata->decode_data->in_bytecode&0x0000FFFF); switch(opcode){ case 0: simdata->exec_data->EXEC_ACTION=MOVE; simdata->exec_data->in_op1->OP_ADDR=IMMEDIATE; simdata->exec_data->in_op1->data=imm; simdata->exec_data->out_op->OP_ADDR=REGISTERL; simdata->exec_data->out_op->data=op1; break; case 1: simdata->exec_data->EXEC_ACTION=MOVE; simdata->exec_data->in_op1->OP_ADDR=IMMEDIATE; simdata->exec_data->in_op1->data=imm; simdata->exec_data->out_op->OP_ADDR=REGISTERH; simdata->exec_data->out_op->data=op1; break; } break; default: return 1; } return 0; } struct exec_data_t *malloc_exec_data(){ struct exec_data_t *ret; ret=malloc(sizeof(struct exec_data_t)); if(!ret) return 0; ret->in_op1=malloc(sizeof(struct exec_op_t)); if(!ret->in_op1){ free(ret); return 0; } ret->in_op2=malloc(sizeof(struct exec_op_t)); if(!ret->in_op2){ free(ret->in_op1); free(ret); return 0; } ret->out_op=malloc(sizeof(struct exec_op_t)); if(!ret->out_op){ free(ret->in_op1); free(ret->in_op2); free(ret); return 0; } return ret; } void free_exec_data(struct exec_data_t *tofree){ free(tofree->in_op1); free(tofree->in_op2); free(tofree->out_op); free(tofree); } int exec(struct simdata_t *simdata){ switch(simdata->exec_data->EXEC_ACTION){ case JUMP: if(simdata->exec_data->out_op->OP_ADDR==IMMEDIATE) simdata->PC=simdata->exec_data->out_op->data; else return 1; break; case EXEC_ALU: if( simdata->exec_data->in_op1->OP_ADDR==REGISTER && simdata->exec_data->in_op2->OP_ADDR==REGISTER && simdata->exec_data->out_op->OP_ADDR==REGISTER ){ uint32_t result; switch(simdata->exec_data->ALU_OP){ case ALU_ADD: result = simdata->registers->GPR[simdata->exec_data->in_op1->data] + simdata->registers->GPR[simdata->exec_data->in_op2->data]; simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)| (simdata->registers->GPR[simdata->exec_data->out_op->data] < simdata->registers->GPR[simdata->exec_data->in_op1->data])<<1; break; case ALU_SUB: case ALU_CMP: result = simdata->registers->GPR[simdata->exec_data->in_op1->data] - simdata->registers->GPR[simdata->exec_data->in_op2->data]; simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)| (simdata->registers->GPR[simdata->exec_data->out_op->data] > simdata->registers->GPR[simdata->exec_data->in_op1->data])<<1; break; case ALU_SL: simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)| ((simdata->registers->GPR[simdata->exec_data->in_op1->data]&0x80000000)?2:0); result = simdata->registers->GPR[simdata->exec_data->in_op1->data]<<1; break; case ALU_SR: simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFD)| ((simdata->registers->GPR[simdata->exec_data->in_op1->data]&0x00000001)?2:0); result = simdata->registers->GPR[simdata->exec_data->in_op1->data]>>1; break; default: return 1; } simdata->registers->FLAGS=(simdata->registers->FLAGS&0xFFFFFFFE)|(result==0); if(simdata->exec_data->ALU_OP!=ALU_CMP) simdata->registers->GPR[simdata->exec_data->out_op->data]=result; }else return 1; break; case MOVE: switch(simdata->exec_data->out_op->OP_ADDR){ case REGISTERL: if(simdata->exec_data->in_op1->OP_ADDR==IMMEDIATE) simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0xFFFF0000)|(0x0000FFFF& simdata->exec_data->in_op1->data); else simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0xFFFF0000)|(0x0000FFFF& simdata->registers->GPR[simdata->exec_data->in_op1->data]); break; case REGISTERH: if(simdata->exec_data->in_op1->OP_ADDR==IMMEDIATE) simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0x0000FFFF)|((0x0000FFFF& simdata->exec_data->in_op1->data)<<16); else simdata->registers->GPR[simdata->exec_data->out_op->data]=(simdata->registers->GPR[simdata->exec_data->out_op->data]&0x0000FFFF)|((0x0000FFFF& simdata->registers->GPR[simdata->exec_data->in_op1->data])<<16); break; default: return 1; } } return 0; } int state=0; int cpu_cycle_clock(struct simdata_t *simdata){ switch(state){ case 0: if( fetch(simdata) ) return 3; break; case 1: if( decode(simdata) ) return 2; break; case 2: if( exec(simdata) ) return 1; break; } if(state==2) state=0; else state++; return 0; } int cpu_simdata_malloc(struct simdata_t *simdata){ simdata->fetch_data=malloc_fetch_data(); simdata->decode_data=malloc_decode_data(); simdata->exec_data=malloc_exec_data(); simdata->registers=malloc(sizeof(struct registers_t)); if((simdata->fetch_data!=NULL)&&(simdata->decode_data!=NULL)&&(simdata->exec_data!=NULL)) return 1; else return 0; } void cpu_simdata_free(struct simdata_t *simdata){ free_fetch_data(simdata->fetch_data); free_decode_data(simdata->decode_data); free_exec_data(simdata->exec_data); free(simdata->registers); }