/* processor.v - implementation of most functions of the 9086 processor This file is part of the 9086 project. Copyright (c) 2023 Efthymios Kritikos This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ `include "proc_state_def.v" `include "alu_header.v" `include "config.v" module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write, output reg HALT,output reg ERROR); /*if we don't read, output the register to have the bus stable by the write falling edge*/ reg [15:0] data_bus_output_register; assign external_data_bus=read?data_bus_output_register:16'hz; /*** Global Definitions ***/ reg [`PROC_STATE_BITS-1:0] state; /* Decoder */ wire Wbit, Sbit, unaligning_instruction; wire [`PROC_STATE_BITS-1:0] next_state; wire [1:0]MOD; wire [2:0]RM; wire [15:0]DE_PARAM1; wire [15:0]DE_PARAM2; wire DE_ERROR,DE_HALT; wire [3:0]DE_reg_read_port1_addr,DE_reg_write_addr; wire opcode_size; wire has_operands; decoder decoder( CIR,FLAGS,Wbit,Sbit,unaligning_instruction,opcode_size,DE_ERROR,next_state ,MOD,RM,DE_PARAM1,DE_PARAM2,DE_HALT,has_operands ,in_alu1_sel1,in_alu1_sel2,out_alu1_sel ,DE_reg_read_port1_addr,DE_reg_write_addr ,ALU_1OP ); // Registers reg [19:0] ProgCount; /*TODO consider having single circuit to increment PC instead of having possible lots of adders all over the code*/ reg [15:0] CIR; reg [15:0] PARAM1; reg [15:0] PARAM2; reg one_byte_instruction; reg unaligned_access; reg [15:0]FLAGS; reg [15:0] BYTE_WRITE_TEMP_REG;//we read 16bits here if we want to change just 8 and leave the rest /*** RESET LOGIC ***/ always @(negedge reset) begin if (reset==0) begin @(posedge clock); state=`PROC_HALT_STATE; ProgCount=0;//TODO: Reset Vector HALT=0; reg_write_we=1; unaligned_access=0; @(posedge reset) @(negedge clock); state=`PROC_IF_STATE_ENTRY; one_byte_instruction=0; ERROR=0; end end /*** ALU and EXEC stage logic ***/ //Architectural Register file reg [3:0] reg_write_addr; wire [15:0] reg_write_data; reg reg_write_we; reg [3:0] reg_read_port1_addr; reg [15:0] reg_read_port1_data; reg [1:0] reg_write_in_sel; mux4 #(.WIDTH(16)) REG_FILE_WRITE_IN_MUX( ALU_1O, 16'hz, 16'hz, 16'hz, reg_write_in_sel, reg_write_data); register_file register_file(reg_write_addr,reg_write_data,reg_write_we,reg_read_port1_addr,reg_read_port1_data); /**** ALU 1 ******/ reg [1:0] in_alu1_sel1; reg [1:0] in_alu1_sel2; /* out_alu1_sel : { EXTRA_FUNCTIONS_BIT[0:0], MOD_OR_EXTRA_FUNCTION[1:0] } */ reg [2:0] out_alu1_sel; mux4 #(.WIDTH(16)) MUX16_1A( PARAM1, reg_read_port1_data, {ProgCount[14:0],unaligned_access}, 16'b0, in_alu1_sel1, ALU_1A); mux4 #(.WIDTH(16)) MUX16_1B( PARAM2, reg_read_port1_data, {ProgCount[14:0],unaligned_access}, 16'b0, in_alu1_sel2, ALU_1B); wire [15:0] ALU_1A; wire [15:0] ALU_1B; wire [15:0] ALU_1O; reg [`ALU_OP_BITS-1:0]ALU_1OP; wire [7:0] ALU_1FLAGS; ALU ALU1(ALU_1A,ALU_1B,ALU_1O,ALU_1OP,ALU_1FLAGS,Wbit); /*** Processor stages ***/ `define invalid_instruction state=`PROC_IF_STATE_ENTRY;ERROR=1; always @(negedge clock) begin case(state) `PROC_IF_WRITE_CIR:begin if(unaligned_access)begin if(one_byte_instruction==1)begin /*TODO: have a read buffer so we can do this even with data reads */ CIR <= {CIR[7:0],external_data_bus[15:8]}; state=`PROC_DE_STATE_ENTRY; end else begin CIR[15:8] <= external_data_bus[7:0]; state=`PROC_IF_STATE_EXTRA_FETCH_SET; end end else begin CIR <= external_data_bus; ProgCount=ProgCount+1; state=`PROC_DE_STATE_ENTRY; end end `PROC_IF_STATE_EXTRA_FETCH:begin CIR[7:0] <= external_data_bus[15:8]; state=`PROC_DE_STATE_ENTRY; end `PROC_EX_STATE_EXIT:begin unaligned_access=unaligning_instruction^unaligned_access; case(out_alu1_sel) /*TODO: use RM*/ 3'b000, 3'b001, 3'b010 : begin case (RM) /* Duplicate code with write... */ 3'b000:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b001:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b010:begin /*[BP]+[SI]*/ `invalid_instruction end 3'b011:begin /*[BP]+[DI]*/ `invalid_instruction end 3'b100:begin /*[SI]*/ reg_read_port1_addr=4'b1110; state=`PROC_MEMIO_WRITE; end 3'b101:begin /*[DI]*/ reg_read_port1_addr=4'b1111; state=`PROC_MEMIO_WRITE; end 3'b110:begin /*d16 */ `invalid_instruction end 3'b111:begin /*[BX]*/ reg_read_port1_addr=4'b1011; state=`PROC_MEMIO_WRITE; end endcase end 3'b011:begin reg_write_we=0; state=`PROC_IF_STATE_ENTRY; end 3'b101:begin ProgCount={5'b00000,ALU_1O[15:1]}; unaligned_access=ALU_1O[0:0]; state=`PROC_IF_STATE_ENTRY; end 3'b100:begin state=`PROC_IF_STATE_ENTRY; end default:begin `invalid_instruction end endcase end `PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin external_address_bus = ProgCount; state=`PROC_DE_LOAD_16_EXTRA_FETCH; end `PROC_MEMIO_READ_SETADDR:begin external_address_bus = {5'b00000,reg_read_port1_data[15:1]}; state=reg_read_port1_data[0:0]?`PROC_MEMIO_GET_UNALIGNED_DATA:`PROC_MEMIO_GET_ALIGNED_DATA; end `PROC_MEMIO_PUT_BYTE:begin BYTE_WRITE_TEMP_REG=external_data_bus; state=`PROC_MEMIO_PUT_BYTE_STOP_READ; end `PROC_MEMIO_WRITE_EXIT:begin write=0; state=`PROC_IF_STATE_ENTRY; end `PROC_MEMIO_PUT_ALIGNED_DATA:begin read=1; data_bus_output_register={ALU_1O[7:0],ALU_1O[15:8]}; state=`PROC_MEMIO_WRITE_EXIT; end `PROC_MEMIO_PUT_UNALIGNED_DATA:begin BYTE_WRITE_TEMP_REG=external_data_bus; state=`PROC_MEMIO_PUT_UNALIGNED_FIRST_BYTE; end `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT:begin write=0; state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2; data_bus_output_register={BYTE_WRITE_TEMP_REG[15:8],ALU_1O[7:0]}; end `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT3:begin BYTE_WRITE_TEMP_REG=external_data_bus; state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT4; end `PROC_MEMIO_GET_SECOND_BYTE:begin external_address_bus=external_address_bus+1; state=`PROC_MEMIO_GET_SECOND_BYTE1; end `PROC_DE_LOAD_8_PARAM_UNALIGNED:begin if({Sbit,Wbit}==2'b11)begin PARAM1 = {{8{external_data_bus[15:15]}},external_data_bus[15:8]}; end else begin PARAM1[7:0] = external_data_bus[15:8]; end state=`PROC_EX_STATE_ENTRY; end default:begin end endcase end always @(posedge clock) begin case(state) `PROC_HALT_STATE:begin end `PROC_IF_STATE_ENTRY:begin `ifdef DEBUG_PC_ADDRESS /* Weird (possible bug) where even though the * testbench stop the clock after ERROR gets * raised the logic for the rising edge still * gets triggered printing this debug message. */ if(ERROR!=1) $display("Fetched instruction at %04x",{ProgCount[18:0],unaligned_access}); `endif external_address_bus = ProgCount; read = 0; write = 1; reg_write_we=1; state=`PROC_IF_WRITE_CIR; reg_write_in_sel=2'b00; end `PROC_IF_STATE_EXTRA_FETCH_SET:begin ProgCount=ProgCount+1; external_address_bus = ProgCount; state=`PROC_IF_STATE_EXTRA_FETCH; end `PROC_DE_STATE_ENTRY:begin /* If we are unaligned, the address bus contains the * ProgCount and points to the second word containing * the nest unread byte in extenral_data_bus[7:0]. If * we are aligned the address bus points to the first * word of the instruction which contains no useful * data anymore but the ProgCount has the correct * address so update it now so that whatever the case * external_data_bus contains at least some unknown data */ one_byte_instruction=(!has_operands)&&(!opcode_size); external_address_bus = ProgCount; state=next_state; PARAM1=DE_PARAM1; PARAM2=DE_PARAM2; ERROR=DE_ERROR; HALT=DE_HALT; reg_read_port1_addr=DE_reg_read_port1_addr; reg_write_addr=DE_reg_write_addr; end `PROC_DE_LOAD_REG_TO_PARAM:begin PARAM1=reg_read_port1_data; state=`PROC_EX_STATE_ENTRY; end `PROC_DE_LOAD_8_PARAM:begin if(opcode_size==0)begin if({Sbit,Wbit}==2'b11)begin /*signed "16bit" read*/ PARAM1 = {{8{CIR[7:7]}},CIR[7:0]}; end else begin PARAM1[7:0] = CIR[7:0]; end state=`PROC_EX_STATE_ENTRY; end else begin if(unaligned_access==1)begin if({Sbit,Wbit}==2'b11)begin /*signed "16bit" read*/ PARAM1 = {{8{external_data_bus[7:7]}},external_data_bus[7:0]}; end else begin PARAM1[7:0] = external_data_bus[7:0]; end ProgCount=ProgCount+1; state=`PROC_EX_STATE_ENTRY; end else begin external_address_bus=ProgCount; state=`PROC_DE_LOAD_8_PARAM_UNALIGNED; end end end `PROC_DE_LOAD_16_PARAM:begin if(opcode_size==0)begin if(unaligned_access==1)begin PARAM1 = {external_data_bus[7:0],external_data_bus[15:8]}; ProgCount=ProgCount+1; state=`PROC_EX_STATE_ENTRY; end else begin PARAM1 = {external_data_bus[15:8],CIR[7:0]}; state=`PROC_EX_STATE_ENTRY; end end else begin ProgCount=ProgCount+1; if(unaligned_access==1)begin PARAM1[7:0] = external_data_bus[7:0]; state=`PROC_DE_LOAD_16_EXTRA_FETCH_SET; end else begin PARAM1 = {external_data_bus[7:0],external_data_bus[15:8]}; state=`PROC_EX_STATE_ENTRY; end end end `PROC_DE_LOAD_16_EXTRA_FETCH:begin PARAM1[15:8] = external_data_bus[15:8]; state=`PROC_EX_STATE_ENTRY; end `RPOC_MEMIO_READ:begin /*Decode MOD R/M, read the data and place it to PARAM1*/ case (RM) 3'b000:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b001:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b010:begin /*[BP]+[SI]*/ `invalid_instruction end 3'b011:begin /*[BP]+[DI]*/ `invalid_instruction end 3'b100:begin /*[SI]*/ reg_read_port1_addr=4'b1110; state=`PROC_MEMIO_READ_SETADDR; end 3'b101:begin /*[DI]*/ reg_read_port1_addr=4'b1111; state=`PROC_MEMIO_READ_SETADDR; end 3'b110:begin /*d16 */ `invalid_instruction end 3'b111:begin /*[BX]*/ reg_read_port1_addr=4'b1011; state=`PROC_MEMIO_READ_SETADDR; end endcase if(MOD!=2'b00)begin /*Actually check if 01 and add the 8bits or if 10 add the 16bits ....*/ `invalid_instruction; end end `PROC_MEMIO_GET_ALIGNED_DATA:begin PARAM1=(Wbit==1)? {external_data_bus[7:0],external_data_bus[15:8]} : {8'b00000000,external_data_bus[15:8]} ; state=`PROC_EX_STATE_ENTRY; end `PROC_MEMIO_GET_UNALIGNED_DATA:begin PARAM1={8'b00000000,external_data_bus[7:0]}; if(Wbit==1) begin state=`PROC_MEMIO_GET_SECOND_BYTE; end else begin state=`PROC_EX_STATE_ENTRY; end end `PROC_EX_STATE_ENTRY:begin FLAGS[7:0] = ALU_1FLAGS[7:0]; state=`PROC_EX_STATE_EXIT; end `PROC_MEMIO_WRITE:begin /* ADDRESS: reg_read_port1_data DATA:ALU1_O */ `ifdef DEBUG_MEMORY_WRITES $display("Writing at %04x , %04x",reg_read_port1_data,ALU_1O); `endif external_address_bus = {5'b00000,reg_read_port1_data[15:1]}; state = (Wbit==0) ? `PROC_MEMIO_PUT_BYTE : (reg_read_port1_data[0:0]?`PROC_MEMIO_PUT_UNALIGNED_DATA:`PROC_MEMIO_PUT_ALIGNED_DATA) ; end `PROC_MEMIO_PUT_BYTE_STOP_READ:begin read=1; state=`PROC_MEMIO_WRITE_EXIT; if(reg_read_port1_data[0:0]==0) data_bus_output_register={ALU_1O[7:0],BYTE_WRITE_TEMP_REG[7:0]}; else data_bus_output_register={BYTE_WRITE_TEMP_REG[15:8],ALU_1O[7:0]}; end `PROC_MEMIO_PUT_UNALIGNED_FIRST_BYTE:begin read=1; state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT; data_bus_output_register={BYTE_WRITE_TEMP_REG[15:8],ALU_1O[7:0]}; end `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2:begin external_address_bus=external_address_bus+1; write=1; read=0; state=`PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT3; end `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT4:begin read=1; state=`PROC_MEMIO_WRITE_EXIT; data_bus_output_register={ALU_1O[15:8],BYTE_WRITE_TEMP_REG[7:0]}; end `PROC_MEMIO_GET_SECOND_BYTE1:begin PARAM1[15:8]=external_data_bus[15:8]; state=`PROC_EX_STATE_ENTRY; end default:begin end endcase end endmodule