/* decoder.v - Implementation of instruction opcode decoding logic This file is part of the 9086 project. Copyright (c) 2023 Efthymios Kritikos This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ `include "exec_state_def.v" `include "alu_header.v" `include "ucode_header.v" `include "error_header.v" module microcode( input [`UCODE_ADDR_BITS-1:0] ADDR, output [`UCODE_DATA_BITS-1:0] DATA ); initial begin string ucode_path; if($value$plusargs("MICROCODE=%s",ucode_path))begin $readmemb(ucode_path,ucode_rom,0,`UCODE_SIZE-1); end else begin $display("Please supply microcode rom file as a runtime vvp argument +MICROCODE="); $finish; end end reg [`UCODE_DATA_BITS-1:0] ucode_rom [ 0:`UCODE_SIZE-1 ]; assign DATA=ucode_rom[ADDR]; endmodule // verilator lint_off UNUSEDSIGNAL module decoder( input wire [15:0] CIR,input wire [15:0] FLAGS, output wire [2:0] INSTRUCTION_INFO, output wire [`ERROR_BITS:0] DECODER_SIGNALS, output reg [`EXEC_STATE_BITS-1:0] next_state ,output reg [2:0]IN_MOD, output reg [2:0]RM, output reg [15:0] PARAM1,output reg [15:0] PARAM2 ,output reg [1:0]in_alu_sel1,output reg [1:0]in_alu_sel2,output reg [2:0]OUT_MOD ,output wire [11:0]REGISTER_FILE_CONTROL ,output reg [2:0]ALU_1OP ,output reg [`UCODE_ADDR_BITS-1:0] seq_addr_entry, input wire SIMPLE_MICRO, input wire [`UCODE_ADDR_BITS-1:0] seq_addr_input ,output reg memio_address_select ,output reg MEM_OR_IO ); // verilator lint_on UNUSEDSIGNAL reg [3:0]reg_read_port1_addr; reg [3:0]reg_read_port2_addr; reg [3:0]reg_write_addr; assign REGISTER_FILE_CONTROL={reg_write_addr,reg_read_port1_addr,reg_read_port2_addr}; /* For correct fetching of instructions and global options for the alu */ reg Wbit,Sbit,opcode_size; assign INSTRUCTION_INFO={Wbit,Sbit,opcode_size}; reg [`ERROR_BITS-1:0] ERROR; reg HALT; assign DECODER_SIGNALS={ERROR,HALT}; // verilator lint_off UNUSEDSIGNAL wire [`UCODE_DATA_BITS-1:0] ucode_data; // verilator lint_on UNUSEDSIGNAL microcode ucode(seq_addr_input,ucode_data); `define invalid_instruction next_state=`EXEC_DONE;ERROR<=`ERR_UNIMPL_INSTRUCTION;IN_MOD=3'b011;seq_addr_entry<=`UCODE_NO_INSTRUCTION; //TODO: A possible optimisation for instruction with 8bit parameter and //opcode_size=0 would be to set PARAM1 here instead of sending execution over //to EXEC_DE_LOAD_8_PARAM `define normal_instruction seq_addr_entry<=`UCODE_NO_INSTRUCTION;ERROR<=`ERR_NO_ERROR;HALT<=0;MEM_OR_IO=0; `define normal_microcoded ERROR<=`ERR_NO_ERROR;HALT<=0;MEM_OR_IO=0; // I use blocking for basically putting names on the different fields of CIR and // then branching off of that instead of the raw bits. otherwise the code // would be identical // verilator lint_off BLKSEQ always @( FLAGS or CIR or SIMPLE_MICRO or seq_addr_input ) begin if (SIMPLE_MICRO==0)begin casez({CIR[15:8],CIR[5:3]}) 11'b0000_010?_??? : begin /* ADD - Add Immediate word/byte to accumulator */ /* 0 0 0 0 0 1 0 W | DATA | DATA if W |*/ opcode_size=0; //TODO: move the decoding done in BIU here and use theat size checker Wbit=CIR[8:8]; IN_MOD=3'b011; in_alu_sel1=2'b00; in_alu_sel2=2'b01; OUT_MOD=3'b011; MEM_OR_IO=0; reg_read_port2_addr={Wbit,3'b000}; reg_write_addr={Wbit,3'b000}; ALU_1OP=`ALU_OP_ADD; memio_address_select=0; if(Wbit) next_state=`EXEC_DE_LOAD_16_PARAM; else next_state=`EXEC_DE_LOAD_8_PARAM; `normal_instruction; end 11'b1000_00??_101, /* SUB */ 11'b1000_00??_000 : /* ADD */ begin /* ADD - Add Immediate word/byte to register/memory */ /* 1 0 0 0 0 0 S W | MOD 0 0 0 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ /* SUB - Subtract immediate word/byte from register/memory */ /* 1 0 0 0 0 0 S W | MOD 1 0 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ opcode_size=1; Wbit=CIR[8:8]; Sbit=CIR[9:9]; IN_MOD={1'b0,CIR[7:6]}; RM=CIR[2:0]; in_alu_sel1=2'b00; if(IN_MOD==3'b011)begin in_alu_sel2=2'b01; reg_read_port2_addr={Wbit,RM}; reg_write_addr={Wbit,RM}; end else begin in_alu_sel2=2'b00; end OUT_MOD=IN_MOD; MEM_OR_IO=0; memio_address_select=0; case({Sbit,Wbit}) 2'b00,2'b11:begin next_state=`EXEC_DE_LOAD_8_PARAM; end 2'b01:begin next_state=`EXEC_DE_LOAD_16_PARAM; end default:begin `invalid_instruction end endcase case(CIR[5:3]) 3'b000: ALU_1OP=`ALU_OP_ADD; 3'b101: ALU_1OP=`ALU_OP_SUB_REVERSE; default:begin /*Should be impossible*/ `invalid_instruction end endcase `normal_instruction; end 11'b1000_00??_111 : begin /* CMP - compare Immediate with register / memory */ /* 1 0 0 0 0 0 S W | MOD 1 1 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ opcode_size=1; Wbit=CIR[8:8]; Sbit=CIR[9:9]; IN_MOD={1'b0,CIR[7:6]}; RM=CIR[2:0]; if ( {Sbit,Wbit} == 2'b10 )begin `invalid_instruction end in_alu_sel1=2'b00; OUT_MOD=3'b100; MEM_OR_IO=0; ALU_1OP=`ALU_OP_SUB; memio_address_select=0; if(IN_MOD==3'b011)begin /*compare register with param*/ in_alu_sel2=2'b01; reg_read_port2_addr={Wbit,RM}; next_state=`EXEC_DE_LOAD_8_PARAM; end else begin /*compare register indirect access * with param */ in_alu_sel2=2'b00; next_state=`EXEC_DE_LOAD_16_PARAM; /*will then call MEMIO_READ*/ end `normal_instruction; end 11'b1011_0???_??? : begin /* MOV - Move Immediate byte to register */ /* 1 0 1 1 W REG | DATA | DATA if W |*/ Wbit=CIR[11:11]; /* IS 0 */ opcode_size=0; IN_MOD=3'b011; in_alu_sel1=2'b00; in_alu_sel2=2'b00; OUT_MOD=3'b011; MEM_OR_IO=0; reg_write_addr={1'b0,CIR[10:8]}; PARAM1[7:0]=CIR[7:0]; PARAM2=0; ALU_1OP=`ALU_OP_ADD; next_state=`EXEC_WRITE_ENTRY; `normal_instruction; memio_address_select=0; end 11'b1011_1???_??? : begin /*MOV - Move Immediate word to register*/ Wbit=CIR[11:11]; /*IS 1 */ opcode_size=0; IN_MOD=3'b011; in_alu_sel1=2'b00; in_alu_sel2=2'b00; OUT_MOD=3'b011; MEM_OR_IO=0; reg_write_addr={1'b1,CIR[10:8]}; ALU_1OP=`ALU_OP_ADD; PARAM2=0; next_state=`EXEC_DE_LOAD_16_PARAM; `normal_instruction; memio_address_select=0; end 11'b1000_10??_??? : begin /* MOV - Reg/Mem to/from register */ /* 1 0 0 0 1 0 D W | MOD REG RM | < DISP LO > | < DISP HI > |*/ opcode_size=1; RM=CIR[2:0]; Wbit=CIR[8:8]; in_alu_sel1=2'b00; PARAM1=0; MEM_OR_IO=0; if(CIR[9:9] == 1)begin /* Mem/Reg to reg */ IN_MOD={1'b0,CIR[7:6]}; if(IN_MOD==3'b011)begin /*Reg to Reg*/ in_alu_sel2=2'b01; reg_read_port2_addr={Wbit,RM}; next_state=`EXEC_WRITE_ENTRY; end else begin /*Mem to Reg*/ in_alu_sel2=2'b00; next_state=`EXEC_MEMIO_READ; end OUT_MOD=3'b011; reg_write_addr={Wbit,CIR[5:3]}; end else begin /* Reg to Mem/Reg */ IN_MOD=3'b011; OUT_MOD={1'b0,CIR[7:6]}; if(IN_MOD==3'b011)begin /*Reg to Reg*/ in_alu_sel2=2'b01; reg_write_addr={Wbit,RM}; next_state=`EXEC_WRITE_ENTRY; end else begin /*Reg to Mem*/ in_alu_sel2=2'b00; next_state=`EXEC_DE_LOAD_REG_TO_PARAM; end reg_read_port2_addr={Wbit,CIR[5:3]}; end ALU_1OP=`ALU_OP_ADD; `normal_instruction; memio_address_select=0; end 11'b0100_????_???:begin//DEC /* DEC - Decrement Register */ /* | 0 1 0 0 1 REG | */ /* INC - Increment Register */ /* | 0 1 0 0 0 REG | */ opcode_size=0; Wbit=1; in_alu_sel1=2'b01; in_alu_sel2=2'b00; OUT_MOD=3'b011; MEM_OR_IO=0; IN_MOD=3'b011; PARAM2=1; reg_read_port1_addr={1'b1,CIR[10:8]}; reg_write_addr={1'b1,CIR[10:8]}; if(CIR[11:11]==0) ALU_1OP=`ALU_OP_ADD; else ALU_1OP=`ALU_OP_SUB; next_state=`EXEC_WRITE_ENTRY; `normal_instruction; memio_address_select=0; end 11'b1111_111?_00? : begin /* INC - Register/Memory */ /* 1 1 1 1 1 1 1 W | MOD 0 0 0 R/M | < DISP LO> | < DISP HI> */ /* DEC - Register/Memory */ /* 1 1 1 1 1 1 1 W | MOD 0 0 1 R/M | < DISP LO> | < DISP HI> */ opcode_size=1; Wbit=CIR[8:8]; IN_MOD={1'b0,CIR[7:6]}; RM=CIR[2:0]; in_alu_sel2=(IN_MOD==3'b011)? 2'b01 : 2'b00; in_alu_sel1=2'b00;/* number 1 */ PARAM1=1; OUT_MOD=IN_MOD; MEM_OR_IO=0; /*in case IN_MOD=011 */ reg_read_port2_addr={1'b0,RM}; reg_write_addr={1'b0,RM}; ALU_1OP=(CIR[3:3]==1)?`ALU_OP_SUB_REVERSE:`ALU_OP_ADD; if ( IN_MOD == 3'b011 ) next_state=`EXEC_WRITE_ENTRY; else next_state=`EXEC_MEMIO_READ; `normal_instruction; memio_address_select=0; end 11'b1111_0100_??? : begin /* HLT - Halt */ /* 1 1 1 1 0 1 0 0 | */ opcode_size=0; IN_MOD=3'b011; HALT<=1; ERROR<=`ERR_NO_ERROR; MEM_OR_IO=0; seq_addr_entry<=`UCODE_NO_INSTRUCTION; next_state=`EXEC_HALT; memio_address_select=0; end 11'b0011_110?_??? : begin /* CMP - Compare Immediate with accumulator */ /* 0 0 1 1 1 1 0 W | DATA | DATA if W |*/ /* */ /* NOTE: 8086 doc doesn't show the third byte but the */ /* W flag and my assembler seem to disagree */ Wbit=CIR[8:8]; opcode_size=0; IN_MOD=3'b011; in_alu_sel1=2'b00; in_alu_sel2=2'b01; reg_read_port2_addr={Wbit,3'b000}; OUT_MOD=3'b100; ALU_1OP=`ALU_OP_SUB; MEM_OR_IO=0; if(Wbit==1) next_state=`EXEC_DE_LOAD_16_PARAM; else begin PARAM1[7:0]=CIR[7:0]; next_state=`EXEC_WRITE_ENTRY; end `normal_instruction; memio_address_select=0; end 11'b0111_????_???:begin /* Conditional relative jumps */ /* JE/JZ - Jump on Zero */ /* 0 1 1 1 0 1 0 0 | IP-INC8 |*/ /* JS - Jump on Sign */ /* 0 1 1 1 1 0 0 0 | IP-INC8 |*/ /* JNS -Jump on not Sign */ /* 0 1 1 1 1 0 0 1 | IP-INC8 |*/ /* .... */ Wbit=1; opcode_size=0; in_alu_sel1=2'b10; in_alu_sel2=2'b00; PARAM2={{8{CIR[7:7]}},CIR[7:0]}; ALU_1OP=`ALU_OP_ADD_SIGNED_B; MEM_OR_IO=0; OUT_MOD=3'b101; case(CIR[11:9]) 3'b000: begin /* Jump on (not) Overflow */ if(FLAGS[11:11]==CIR[8:8]) next_state=`EXEC_NEXT_INSTRUCTION; else begin next_state=`EXEC_WRITE_ENTRY; end end 3'b010: begin /* Jump on (not) Zero */ if(FLAGS[6:6]==CIR[8:8]) next_state=`EXEC_NEXT_INSTRUCTION; else next_state=`EXEC_WRITE_ENTRY; end 3'b100: begin /* Jump on (not) Sign */ if(FLAGS[7:7]==CIR[8:8]) next_state=`EXEC_NEXT_INSTRUCTION; else next_state=`EXEC_WRITE_ENTRY; end 3'b101: begin /* Jump on (not) Parity */ if(FLAGS[2:2]==CIR[8:8]) next_state=`EXEC_NEXT_INSTRUCTION; else next_state=`EXEC_WRITE_ENTRY; end default:begin `invalid_instruction; /*We don't support that condition*/ end endcase `normal_instruction; memio_address_select=0; end 11'b1110_1011_???:begin /* JMP - Unconditional jump direct within segment (short) */ /* | 1 1 1 0 1 0 1 1 | IP-INC-LO | */ opcode_size=0; Wbit=1; in_alu_sel1=2'b10; in_alu_sel2=2'b00; PARAM2={{8{CIR[7:7]}},CIR[7:0]}; ALU_1OP=`ALU_OP_ADD_SIGNED_B; OUT_MOD=3'b101; MEM_OR_IO=0; next_state=`EXEC_WRITE_ENTRY; `normal_instruction; memio_address_select=0; end 11'b1110_1000_???:begin /* CALL - Direct call within segment */ /* 1 1 1 0 1 0 0 0 | IP-INC-LO | IP-INC-HI |*/ // Microcode instruction opcode_size=0; Wbit=1; Sbit=1; PARAM2=2; //subtract from sp seq_addr_entry<=`UCODE_CALL_ENTRY; `normal_microcoded memio_address_select=0; end 11'b1100_0011_???:begin /* RET - Return from call within segment */ /* | 1 1 0 0 0 0 1 1 | */ // Microcode instruction opcode_size=0; Wbit=1; Sbit=0; PARAM1=2; seq_addr_entry<=`UCODE_RET_ENTRY; `normal_microcoded memio_address_select=0; end 11'b1010_101?_???:begin /* STOS - Write byte/word to [DI] and increment accordingly */ /* | 1 0 1 0 1 0 1 W | */ opcode_size=0; Wbit=CIR[8:8]; Sbit=0; RM=3'b101; seq_addr_entry<=`UCODE_STOS_ENTRY; `normal_microcoded PARAM2=(Wbit==1)?2:1; memio_address_select=0; end 11'b0101_0???_???:begin /* PUSH - SP-=2; [SP]=REG */ /* | 0 1 0 1 0 REG | */ opcode_size=0; Wbit=1; Sbit=0; PARAM2=2; reg_read_port2_addr={1'b1,CIR[10:8]}; seq_addr_entry<=`UCODE_PUSH_ENTRY; `normal_microcoded memio_address_select=0; end 11'b1111_011?_000:begin /* TEST - Bitwise AND affecting only flags */ /* 1 1 1 1 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */ opcode_size=1; Wbit=CIR[8:8]; IN_MOD={1'b0,CIR[7:6]}; RM={CIR[2:0]}; MEM_OR_IO=0; if(Wbit==1)begin next_state=`EXEC_DE_LOAD_16_PARAM; end else begin next_state=`EXEC_DE_LOAD_8_PARAM; end in_alu_sel1=2'b00; /* PARAM1 */ ALU_1OP=`ALU_OP_AND; case(IN_MOD) 3'b011:begin in_alu_sel2=2'b01; reg_read_port2_addr={Wbit,RM}; end default:begin `invalid_instruction end endcase OUT_MOD=3'b100;/*NULL*/ `normal_instruction; memio_address_select=0; end 11'b0101_1???_???:begin /* POP - REG=[SP]; SP+=2 */ /* | 0 1 0 1 1 REG | */ opcode_size=0; Wbit=1; Sbit=0; PARAM1=2; reg_write_addr={1'b1,CIR[10:8]}; seq_addr_entry<=`UCODE_POP_ENTRY; `normal_microcoded memio_address_select=0; end 11'b1111_1111_100:begin /* JMP - Unconditional indirect within segment jump */ /* 1 1 1 1 1 1 1 1 | MOD 1 0 0 R/M | < DISP-LO > | < DISP-HI > */ opcode_size=1; Wbit=1; IN_MOD={1'b0,CIR[7:6]}; RM=CIR[2:0]; MEM_OR_IO=0; in_alu_sel1=2'b11; if (IN_MOD==3'b011)begin in_alu_sel2=2'b01; reg_read_port2_addr={Wbit,RM}; next_state=`EXEC_WRITE_ENTRY; end else begin in_alu_sel2=2'b00; next_state=`EXEC_MEMIO_READ; end ALU_1OP=`ALU_OP_ADD; OUT_MOD=3'b101; `normal_instruction; memio_address_select=0; end 11'b1100_011?_000:begin /* MOV - Move immediate to register/memory */ /* 1 1 0 0 0 1 1 W | MOD 0 0 0 R/M | < DISP-LO > | < DISP-HI > | DATA | DATA if W */ Wbit=CIR[8:8]; opcode_size=1; in_alu_sel1=2'b00; in_alu_sel2=2'b11; MEM_OR_IO=0; if(Wbit==1)begin next_state=`EXEC_DE_LOAD_16_PARAM; end else begin next_state=`EXEC_DE_LOAD_8_PARAM; end OUT_MOD={1'b0,CIR[7:6]}; IN_MOD=3'b011; RM=CIR[2:0]; `normal_instruction; memio_address_select=0; end 11'b1100_1101_???:begin /* INT - execute interrupt handler */ /* 1 1 0 0 1 1 0 1 | DATA |*/ // [skipped] 1) push flags // [skipped] 2) clear trap and interrupt enable flag // [skipped] 3) push CS // [skipped] 4) fetch CS from interrupt table // 5) push ProgCount // 6) fetch ProgCount from interrupt table opcode_size=0; Wbit=1; Sbit=0; PARAM2=2; seq_addr_entry<=`UCODE_INT_ENTRY; `normal_microcoded memio_address_select=0; end 11'b1110_011?_???:begin /* OUT - write AL or AX to a defined output port */ /* | 1 1 1 0 0 1 1 W | DATA 8 | */ memio_address_select=1; Wbit=CIR[8:8]; opcode_size=0; in_alu_sel1=2'b00; in_alu_sel2=2'b11; reg_read_port1_addr={Wbit,3'b000}; next_state=`EXEC_DE_LOAD_8_PARAM; MEM_OR_IO=1; HALT <= 0; PARAM1=0; OUT_MOD={3'b000}; IN_MOD=3'b011; end 11'b1100_1111_???:begin /* IRET - Return from interrupt */ /* | 1 1 0 0 1 1 1 1 | */ // Since we only push one thing on the stack // on INT we can just reuse the code from RET opcode_size=0; Wbit=1; Sbit=0; PARAM1=2; seq_addr_entry<=`UCODE_RET_ENTRY; `normal_microcoded memio_address_select=0; end default:begin `invalid_instruction end endcase end else begin /*Microcode output*/ //Sbit, Wbit, opcode_size and the others are still latched //from when we ordered the switch to microcode seq_addr_entry <= ucode_data[`UCODE_ADDR_BITS-1:0]; case(ucode_data[8:6]) 3'b000: next_state=`EXEC_WRITE_ENTRY; 3'b001: next_state=`EXEC_DE_LOAD_16_PARAM; 3'b010: next_state=`EXEC_DE_LOAD_8_PARAM; 3'b011: next_state=`EXEC_MEMIO_READ; 3'b100: next_state=`EXEC_MEMIO_READ_SETADDR; default: begin end /*impossible*/ endcase if(ucode_data[36:36]==0) /*Set reg write address*/ reg_write_addr = ucode_data[12:9 ]; in_alu_sel1 = ucode_data[14:13]; in_alu_sel2 = ucode_data[16:15]; OUT_MOD = ucode_data[19:17]; /*1:1 map essentially but I want to keep the spec for these bits separate * from the alu op select bits*/ case(ucode_data[22:20]) 3'b000: ALU_1OP=`ALU_OP_ADD; 3'b001: ALU_1OP=`ALU_OP_SUB; 3'b010: ALU_1OP=`ALU_OP_AND; 3'b011: ALU_1OP=`ALU_OP_OR; 3'b100: ALU_1OP=`ALU_OP_XOR; 3'b101: ALU_1OP=`ALU_OP_ADD_SIGNED_B; 3'b110: ALU_1OP=`ALU_OP_SUB_REVERSE; 3'b111: ALU_1OP=`ALU_OP_SHIFT_LEFT; default: begin end endcase if(ucode_data[34:34]==0) /* Set reg read port 1 address */ reg_read_port1_addr=ucode_data[26:23]; IN_MOD=ucode_data[29:27]; if(ucode_data[35:35]==0) /* Set reg read port 1 address */ reg_read_port2_addr=ucode_data[33:30]; if(ucode_data[37:37]==1) /* Overwrite Wbit */ Wbit=ucode_data[38:38]; memio_address_select=ucode_data[39:39]; MEM_OR_IO=0; HALT <= 0; end end `undef invalid_instruction endmodule // verilator lint_on BLKSEQ