/* decoder.v - Implementation of instruction opcode decoding logic This file is part of the 9086 project. Copyright (c) 2023 Efthymios Kritikos This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ `include "proc_state_def.v" `include "alu_header.v" `include "ucode_header.v" module microcode( input [`UCODE_ADDR_BITS-1:0] ADDR, output [`UCODE_DATA_BITS-1:0] DATA ); initial begin string ucode_path; if($value$plusargs("MICROCODE=%s",ucode_path))begin $readmemb(ucode_path,ucode,0,`UCODE_SIZE-1); end else begin $display("Please supply microcode rom file as a runtime vvp argument +MICROCODE="); $finish; end end reg [`UCODE_DATA_BITS-1:0] ucode [ 0:`UCODE_SIZE-1 ]; assign DATA=ucode[ADDR]; endmodule module decoder( input wire [15:0] CIR,input wire [15:0] FLAGS, output wire [4:0] INSTRUCTION_INFO, output wire [1:0]DECODER_SIGNALS,output reg [`PROC_STATE_BITS-1:0]next_state ,output reg [1:0]MOD, output reg [2:0]RM, output reg [15:0] PARAM1,output reg [15:0] PARAM2 ,output reg [1:0]in_alu1_sel1,output reg [1:0]in_alu1_sel2,output reg [2:0]out_alu1_sel ,output wire [11:0]REGISTER_FILE_CONTROL ,output reg [2:0]ALU_1OP ,output reg [`UCODE_ADDR_BITS-1:0] seq_addr_entry, input wire SIMPLE_MICRO, input wire [`UCODE_ADDR_BITS-1:0] seq_addr_input ); reg [3:0]reg_read_port1_addr; reg [3:0]reg_read_port2_addr; reg [3:0]reg_write_addr; assign REGISTER_FILE_CONTROL={reg_write_addr,reg_read_port1_addr,reg_read_port2_addr}; /* For correct fetching of instructions and global options for the alu */ reg Wbit,Sbit,unaligning,opcode_size,has_operands; assign INSTRUCTION_INFO={Wbit,Sbit,unaligning,opcode_size,has_operands}; reg ERROR, HALT; assign DECODER_SIGNALS={ERROR,HALT}; wire [`UCODE_DATA_BITS-1:0] ucode_data; reg [`UCODE_ADDR_BITS-1:0] UCODE_ADDR; microcode ucode(seq_addr_input,ucode_data); /* 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 */ `define invalid_instruction next_state=`PROC_IF_STATE_ENTRY;ERROR=1;MOD=2'b11; `define start_aligning_instruction unaligning=0; `define start_unaligning_instruction unaligning=1; always @( CIR or SIMPLE_MICRO or seq_addr_input ) begin if (SIMPLE_MICRO==0)begin ERROR=0;HALT=0; casex({CIR[15:8],CIR[5:3]}) 11'b0000_010x_xxx : begin /* Add Immediate word/byte to accumulator */ /* 0 0 0 0 0 1 0 W | DATA | DATA if W |*/ seq_addr_entry=`UCODE_NO_INSTRUCTION; opcode_size=0; has_operands=1; Wbit=CIR[8:8]; if(Wbit) `start_unaligning_instruction else `start_aligning_instruction MOD=2'b11; in_alu1_sel1=2'b00; in_alu1_sel2=2'b01; out_alu1_sel=3'b011; reg_read_port2_addr={Wbit,3'b000}; reg_write_addr={Wbit,3'b000}; ALU_1OP=`ALU_OP_ADD; if(Wbit==1) next_state=`PROC_DE_LOAD_16_PARAM; else begin PARAM1[7:0]=CIR[7:0]; next_state=`PROC_EX_STATE_ENTRY; end end 11'b1000_00xx_000 : begin /* Add Immediate word/byte to register/memory */ /* 1 0 0 0 0 0 S W | MOD 0 0 0 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ seq_addr_entry=`UCODE_NO_INSTRUCTION; `start_aligning_instruction opcode_size=1; has_operands=1; Wbit=CIR[8:8]; Sbit=CIR[9:9]; MOD=2'b11; in_alu1_sel1=2'b00; in_alu1_sel2=2'b01; out_alu1_sel={1'b0,MOD}; reg_read_port2_addr={Wbit,RM}; reg_write_addr={Wbit,RM}; ALU_1OP=`ALU_OP_ADD; next_state=`PROC_DE_LOAD_16_PARAM; if(Wbit==1) next_state=`PROC_DE_LOAD_16_PARAM; else begin `invalid_instruction /*do 8bit loads*/ end end 11'b1000_00xx_111 : begin /* CMP - compare Immediate with register / memory */ /* 1 0 0 0 0 0 S W | MOD 1 1 1 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ seq_addr_entry=`UCODE_NO_INSTRUCTION; opcode_size=1; has_operands=1; Wbit=CIR[8:8]; Sbit=CIR[9:9]; MOD=CIR[7:6]; RM=CIR[2:0]; if(((Wbit==1)&&(Sbit==1))||Wbit==0)begin `start_unaligning_instruction end else begin `invalid_instruction; end if(MOD==2'b11)begin in_alu1_sel1=2'b00; in_alu1_sel2=2'b01; reg_read_port2_addr={Wbit,RM}; out_alu1_sel=3'b100; ALU_1OP=`ALU_OP_SUB; next_state=`PROC_DE_LOAD_8_PARAM; end else begin `invalid_instruction end end 11'b1011_0xxx_xxx : begin /* MOV - Move Immediate byte to register */ /* 1 0 1 1 W REG | DATA | DATA if W |*/ seq_addr_entry=`UCODE_NO_INSTRUCTION; `start_aligning_instruction has_operands=1; Wbit=CIR[11:11]; /* IS 0 */ opcode_size=0; MOD=2'b11; in_alu1_sel1=2'b00; in_alu1_sel2=2'b00; out_alu1_sel=3'b011; reg_write_addr={1'b0,CIR[10:8]}; PARAM1[7:0]=CIR[7:0]; PARAM2=0; ALU_1OP=`ALU_OP_ADD; next_state=`PROC_EX_STATE_ENTRY; end 11'b1011_1xxx_xxx : begin /*MOV - Move Immediate word to register*/ seq_addr_entry=`UCODE_NO_INSTRUCTION; `start_unaligning_instruction has_operands=1; Wbit=CIR[11:11]; /*IS 1 */ opcode_size=0; MOD=2'b11; in_alu1_sel1=2'b00; in_alu1_sel2=2'b00; out_alu1_sel=3'b011; reg_write_addr={1'b1,CIR[10:8]}; ALU_1OP=`ALU_OP_ADD; PARAM2=0; next_state=`PROC_DE_LOAD_16_PARAM; end 11'b1000_10xx_xxx : begin /* MOV - Reg/Mem to/from register */ /* 1 0 0 0 1 0 D W | MOD REG RM | < DISP LO > | < DISP HI > |*/ seq_addr_entry=`UCODE_NO_INSTRUCTION; has_operands=0; `start_aligning_instruction opcode_size=1; MOD=CIR[7:6]; RM=CIR[2:0]; Wbit=CIR[8:8]; in_alu1_sel2=2'b00; if(CIR[9:9] == 1)begin /* Mem/Reg to reg */ if(MOD==2'b11)begin /*Reg to Reg*/ in_alu1_sel1=2'b01; reg_read_port1_addr={Wbit,RM}; next_state=`PROC_EX_STATE_ENTRY; end else begin /*Mem to Reg*/ in_alu1_sel1=2'b00; next_state=`RPOC_MEMIO_READ; end out_alu1_sel=3'b011; reg_write_addr={Wbit,CIR[5:3]}; end else begin /* Reg to Mem/Reg */ if(MOD==2'b11)begin /*Reg to Reg*/ in_alu1_sel1=2'b01; out_alu1_sel=3'b011; reg_write_addr={Wbit,RM}; next_state=`PROC_EX_STATE_ENTRY; end else begin /*Reg to Mem*/ in_alu1_sel1=2'b00; reg_read_port1_addr={Wbit,CIR[5:3]}; out_alu1_sel={1'b0,MOD}; next_state=`PROC_DE_LOAD_REG_TO_PARAM; end reg_read_port1_addr={Wbit,CIR[5:3]}; end ALU_1OP=`ALU_OP_ADD; PARAM2=0; end 11'b0100_xxxx_xxx:begin//DEC /* DEC - Decrement Register */ /* | 0 1 0 0 1 REG | */ /* INC - Increment Register */ /* | 0 1 0 0 0 REG | */ seq_addr_entry=`UCODE_NO_INSTRUCTION; has_operands=0; opcode_size=0; `start_unaligning_instruction Wbit=1; in_alu1_sel1=2'b01; in_alu1_sel2=2'b00; out_alu1_sel=3'b011; MOD=2'b11; PARAM2=1; reg_read_port1_addr={1'b1,CIR[10:8]}; reg_write_addr={1'b1,CIR[10:8]}; if(CIR[11:11]==0) ALU_1OP=`ALU_OP_ADD; else ALU_1OP=`ALU_OP_SUB; next_state=`PROC_EX_STATE_ENTRY; end 11'b1111_111x_00x : begin /* INC - Register/Memory */ /* 1 1 1 1 1 1 1 W | MOD 0 0 0 R/M | < DISP LO> | < DISP HI> */ /* DEC - Register/Memory */ /* 1 1 1 1 1 1 1 W | MOD 0 0 1 R/M | < DISP LO> | < DISP HI> */ seq_addr_entry=`UCODE_NO_INSTRUCTION; has_operands=1; opcode_size=1; `start_aligning_instruction Wbit=CIR[8:8]; MOD=CIR[7:6]; RM=CIR[2:0]; in_alu1_sel1=(MOD==2'b11)? 2'b01 : 2'b00; in_alu1_sel2=2'b00;/* number 1 */ PARAM2=1; out_alu1_sel={1'b0,MOD}; /*in case MOD=11 */ reg_read_port1_addr={1'b0,RM}; reg_write_addr={1'b0,RM}; ALU_1OP=(CIR[3:3]==1)?`ALU_OP_SUB:`ALU_OP_ADD; if ( MOD == 2'b11 ) next_state=`PROC_EX_STATE_ENTRY; else next_state=`RPOC_MEMIO_READ; end 11'b1111_0100_xxx : begin /* HLT - Halt */ /* 1 1 1 1 0 1 0 0 | */ seq_addr_entry=`UCODE_NO_INSTRUCTION; has_operands=0; opcode_size=0; `start_unaligning_instruction MOD=2'b11; HALT=1; next_state=`PROC_HALT_STATE; end 11'b0011_110x_xxx : begin /* CMP - Compare Immediate with accumulator */ /* 0 0 1 1 1 1 0 W | DATA | DATA if W |*/ /* */ /* NOTE: 8086 doc doesn't show the third byte but the */ /* W flag and my assembler seem to disagree */ seq_addr_entry=`UCODE_NO_INSTRUCTION; Wbit=CIR[8:8]; opcode_size=0; has_operands=1; if(Wbit) `start_unaligning_instruction else `start_aligning_instruction MOD=2'b11; in_alu1_sel1=2'b00; in_alu1_sel2=2'b01; reg_read_port2_addr={Wbit,3'b000}; out_alu1_sel=3'b100; ALU_1OP=`ALU_OP_SUB; if(Wbit==1) next_state=`PROC_DE_LOAD_16_PARAM; else begin PARAM1[7:0]=CIR[7:0]; next_state=`PROC_EX_STATE_ENTRY; end end 11'b0111_xxxx_xxx:begin /* Conditional relative jumps */ /* JE/JZ - Jump on Zero */ /* 0 1 1 1 0 1 0 0 | IP-INC8 |*/ /* JS - Jump on Sign */ /* 0 1 1 1 1 0 0 0 | IP-INC8 |*/ /* JNS -Jump on not Sign */ /* 0 1 1 1 1 0 0 1 | IP-INC8 |*/ /* .... */ seq_addr_entry=`UCODE_NO_INSTRUCTION; has_operands=1; `start_aligning_instruction Wbit=1; opcode_size=0; in_alu1_sel1=2'b10; in_alu1_sel2=2'b00; PARAM2={{8{CIR[7:7]}},CIR[7:0]}; ALU_1OP=`ALU_OP_ADD_SIGNED_B; out_alu1_sel=3'b101; case(CIR[11:9]) 3'b000: begin /* Jump on (not) Overflow */ if(FLAGS[11:11]==CIR[8:8]) next_state=`PROC_IF_STATE_ENTRY; else begin next_state=`PROC_EX_STATE_ENTRY; end end 3'b010: begin /* Jump on (not) Zero */ if(FLAGS[6:6]==CIR[8:8]) next_state=`PROC_IF_STATE_ENTRY; else next_state=`PROC_EX_STATE_ENTRY; end 3'b100: begin /* Jump on (not) Sign */ if(FLAGS[7:7]==CIR[8:8]) next_state=`PROC_IF_STATE_ENTRY; else next_state=`PROC_EX_STATE_ENTRY; end 3'b101: begin /* Jump on (not) Parity */ if(FLAGS[2:2]==CIR[8:8]) next_state=`PROC_IF_STATE_ENTRY; else next_state=`PROC_EX_STATE_ENTRY; end default:begin `invalid_instruction; /*We don't support that condition*/ end endcase end 11'b1110_1011_xxx:begin /* JMP - Unconditional jump direct within segment (short) */ /* | 1 1 1 0 1 0 1 1 | IP-INC-LO | */ seq_addr_entry=`UCODE_NO_INSTRUCTION; `start_aligning_instruction opcode_size=0; has_operands=1; Wbit=1; in_alu1_sel1=2'b10; in_alu1_sel2=2'b00; PARAM2={{8{CIR[7:7]}},CIR[7:0]}; ALU_1OP=`ALU_OP_ADD_SIGNED_B; out_alu1_sel=3'b101; next_state=`PROC_EX_STATE_ENTRY; end 11'b1100_1101_xxx:begin /* INT - execute interrupt handler */ /* 1 1 0 0 1 1 0 1 | DATA |*/ seq_addr_entry=`UCODE_NO_INSTRUCTION; has_operands=1; opcode_size=0; `start_aligning_instruction /* Emulate MS-DOS print routines */ if(CIR[7:0]==8'h21 && register_file.registers[0][15:8]==8'h02)begin $write("%s" ,register_file.registers[2][7:0]); /*TODO:Could trigger erroneously while CIR is not final*/ end next_state=`PROC_IF_STATE_ENTRY; end 11'b11101000_xxx:begin /* CALL - Direct call within segment */ /* 1 1 1 0 1 0 0 0 | IP-INC-LO | IP-INC-HI |*/ // Microcode instruction `start_unaligning_instruction opcode_size=0; has_operands=1; Wbit=1; Sbit=1; PARAM2=2; //substract from sp seq_addr_entry=`UCODE_CALL_ENTRY; end default:begin `invalid_instruction end endcase end else begin /*Microcode output*/ //Sbit, Wbit, opcode_size and the others are still latched //from when we ordered the switch to microcode seq_addr_entry=ucode_data[5:0]; case(ucode_data[7:6]) 2'b00: next_state=`PROC_EX_STATE_ENTRY; 2'b01: next_state=`PROC_DE_LOAD_16_PARAM; 2'b10: next_state=`PROC_DE_LOAD_8_PARAM; 2'b11: next_state=`PROC_DE_LOAD_REG_TO_PARAM; endcase reg_write_addr=ucode_data[11:8 ]; in_alu1_sel1 =ucode_data[13:12]; in_alu1_sel2 =ucode_data[15:14]; out_alu1_sel =ucode_data[18:16]; /*1:1 map essentially but I want to keep the spec for these bits seperate * from the alu op select bits*/ case(ucode_data[21:19]) 3'b000: ALU_1OP=`ALU_OP_ADD; 3'b001: ALU_1OP=`ALU_OP_SUB; 3'b010: ALU_1OP=`ALU_OP_AND; 3'b011: ALU_1OP=`ALU_OP_OR; 3'b100: ALU_1OP=`ALU_OP_XOR; 3'b101: ALU_1OP=`ALU_OP_ADD_SIGNED_B; endcase reg_read_port1_addr=ucode_data[25:22]; end end endmodule