/* processor.v - implementation of most functions of the 9086 processor This file is part of the 9086 project. Copyright (c) 2023 Efthymios Kritikos This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ `include "proc_state_def.v" `include "alu_header.v" `include "config.v" `include "ucode_header.v" `include "error_header.v" //HALT: active high //IOMEM: 1=IO 0=MEM //write: active low //read: active low //reset: active low module processor ( input clock, input reset, output [19:0] external_address_bus, inout [15:0] external_data_bus,output read, output write,output BHE,output IOMEM, output reg HALT,output reg [`ERROR_BITS-1:0] ERROR); /*** Global Definitions ***/ reg [`PROC_STATE_BITS-1:0] state; /*############ Bus Interface Unit ############################################### */ wire [31:0] INSTRUCTION; reg jump_req; wire VALID_INSTRUCTION; wire [15:0] INSTRUCTION_LOCATION; reg [15:0] BIU_ADDRESS_INPUT; wire [15:0] BIU_DATA; reg biu_write_request; reg biu_data_direction; reg biu_read_request; wire BIU_VALID_DATA; BIU BIU( clock,reset,external_address_bus,external_data_bus,read,write,BHE,IOMEM, INSTRUCTION,VALID_INSTRUCTION,INSTRUCTION_LOCATION,jump_req,BIU_ADDRESS_INPUT,BIU_DATA,biu_write_request,biu_read_request,Wbit,BIU_VALID_DATA,MEM_OR_IO, state,SIMPLE_MICRO ); assign BIU_DATA= biu_data_direction ? 16'hz : (memio_address_select?reg_read_port1_data:ALU_1O); /*############ Decoder ########################################################## */ reg Wbit, Sbit, opcode_size; wire DE_Wbit, DE_Sbit, DE_opcode_size; wire [`PROC_STATE_BITS-1:0] next_state; reg [2:0]RM; wire [15:0]DE_PARAM1;// Input param1 form decoder to alu wire [15:0]DE_PARAM2; wire [2:0]DE_IN_MOD; wire [2:0]DE_RM; wire [2:0]DE_OUT_MOD; wire [`ERROR_BITS-1:0] DE_ERROR; wire DE_HALT; wire [3:0]DE_reg_read_port1_addr,DE_reg_write_addr,DE_reg_read_port2_addr; wire [11:0]DE_REGISTER_CONTROL; wire [2:0]INSTRUCTION_INFO; wire [`ERROR_BITS:0]DECODER_SIGNALS; wire [`UCODE_ADDR_BITS-1:0] ucode_seq_addr_entry; reg SIMPLE_MICRO; /* output simple decodings (=0) or microcode data (=1) */ wire [2:0] DE_instruction_size; reg instruction_size_init; //TODO : remove completely? /* verilator lint_off UNUSEDSIGNAL */ wire [2:0] instruction_size; /* verilator lint_on UNUSEDSIGNAL */ assign instruction_size = instruction_size_init ? 3'b010 : DE_instruction_size; reg memio_address_select; wire DE_memio_address_select; wire DE_MEM_OR_IO; reg MEM_OR_IO; wire [1:0] DE_in_alu1_sel1; wire [1:0] DE_in_alu1_sel2; reg [`ALU_OP_BITS-1:0] DE_ALU_1OP; decoder decoder( .CIR(INSTRUCTION[31:16]), .FLAGS(FLAGS), .INSTRUCTION_INFO(INSTRUCTION_INFO), .DECODER_SIGNALS(DECODER_SIGNALS), .next_state(next_state), .IN_MOD(DE_IN_MOD), .RM(DE_RM), .PARAM1(DE_PARAM1), .PARAM2(DE_PARAM2), .in_alu1_sel1(DE_in_alu1_sel1), .in_alu1_sel2(DE_in_alu1_sel2), .OUT_MOD(DE_OUT_MOD), .REGISTER_FILE_CONTROL(DE_REGISTER_CONTROL), .ALU_1OP(DE_ALU_1OP), .seq_addr_entry(ucode_seq_addr_entry), .SIMPLE_MICRO(SIMPLE_MICRO), .seq_addr_input(ucode_seq_addr), .instruction_size(DE_instruction_size), .memio_address_select(DE_memio_address_select), .MEM_OR_IO(DE_MEM_OR_IO) ); assign DE_Wbit=INSTRUCTION_INFO[2:2]; assign DE_Sbit=INSTRUCTION_INFO[1:1]; assign DE_opcode_size=INSTRUCTION_INFO[0:0]; assign DE_reg_write_addr=DE_REGISTER_CONTROL[11:8]; assign DE_reg_read_port1_addr=DE_REGISTER_CONTROL[7:4]; assign DE_reg_read_port2_addr=DE_REGISTER_CONTROL[3:0]; assign DE_HALT=DECODER_SIGNALS[0:0]; assign DE_ERROR=DECODER_SIGNALS[`ERROR_BITS:1]; reg [`UCODE_ADDR_BITS-1:0] ucode_seq_addr; /*############ REGISTERS ########################################################## */ reg [15:0] PARAM1; reg [15:0] PARAM2; // verilator lint_off UNDRIVEN reg [15:0] FLAGS; // verilator lint_on UNDRIVEN //Architectural Register file reg [3:0] reg_write_addr; wire [15:0] reg_write_data; reg reg_write_we; reg [3:0] reg_read_port1_addr; reg [15:0] reg_read_port1_data; reg [3:0] reg_read_port2_addr; reg [15:0] reg_read_port2_data; reg [1:0] reg_write_in_sel; mux4 #(.WIDTH(16)) REG_FILE_WRITE_IN_MUX( ALU_1O, 16'hz, 16'hz, 16'hz, reg_write_in_sel, reg_write_data); register_file register_file( .write_port1_addr(reg_write_addr), .write_port1_data(reg_write_data), .write_port1_we(reg_write_we), .read_port1_addr(reg_read_port1_addr), .read_port1_data(reg_read_port1_data), .read_port2_addr(reg_read_port2_addr), .read_port2_data(reg_read_port2_data) ); reg [15:0] ProgCount; /*############ ALU / Execution units ########################################################## */ // ALU 1 reg [1:0] in_alu1_sel1; reg [1:0] in_alu1_sel2; /* OUT_MOD : { EXTRA_FUNCTIONS_BIT[0:0], MOD_OR_EXTRA_FUNCTION[1:0] } */ reg [2:0] IN_MOD; reg [2:0] OUT_MOD; mux4 #(.WIDTH(16)) MUX16_1A( /*0*/ PARAM1, /*1*/ reg_read_port1_data, /*2*/ ProgCount[15:0], /*3*/ 16'd0, /*0 Constant*/ in_alu1_sel1, ALU_1A); mux4 #(.WIDTH(16)) MUX16_1B( /*0*/ PARAM2, /*1*/ reg_read_port2_data, /*2*/ ProgCount[15:0], /*3*/ 16'd0, /*0 Constant*/ in_alu1_sel2, ALU_1B); wire [15:0] ALU_1A; wire [15:0] ALU_1B; wire [15:0] ALU_1O; reg [`ALU_OP_BITS-1:0]ALU_1OP; wire [7:0] ALU_1FLAGS; ALU ALU1( .A(ALU_1A), .B(ALU_1B), .OUT(ALU_1O), .op(ALU_1OP), .FLAGS(ALU_1FLAGS), .Wbit(Wbit) ); /*############ Processor state machine ########################################################## */ /*** RESET LOGIC ***/ /* verilator lint_off MULTIDRIVEN */ always @(negedge reset) begin state <= `PROC_HALT_STATE; //TODO: race condition ?? end always @(posedge reset) begin state <= `PROC_RESET; end /* verilator lint_on MULTIDRIVEN */ /*** Processor stages ***/ `define unimpl_addressing_mode state <= `PROC_DE_STATE_ENTRY;ERROR <= `ERR_UNIMPL_ADDRESSING_MODE; wire [2:0] instr_end; InstrSize InstrSize({INSTRUCTION[31:24],INSTRUCTION[21:19]},instr_end); reg [23:0] INSTRUCTION_BUFFER; always @(posedge clock) begin case(state) `PROC_RESET:begin jump_req <= 0; ucode_seq_addr <= `UCODE_NO_INSTRUCTION; HALT <= 0; ERROR <= `ERR_NO_ERROR; SIMPLE_MICRO <= 0; reg_write_we <= 1; instruction_size_init <= 1; state <= `PROC_DE_STATE_ENTRY; reg_write_in_sel <= 2'b00; //only got wirtten in IF biu_write_request <= 0; biu_data_direction <= 0; biu_read_request <= 0; end `PROC_HALT_STATE:begin end `PROC_DE_STATE_ENTRY:begin reg_write_we <= 1; if(VALID_INSTRUCTION==1) begin if(SIMPLE_MICRO==0)begin /*This flag is set at reset and jump because * at IF we need to know the size of the * previous instruction (specifically if it was * a single byte and the value would be * incorrect in both cases. So when it gets * set reset it only at the start of the next * 8086 instruction */ instruction_size_init <= 0; /* We cannot set these directly within * microcode so don't overwrite useful values * each tie the next microcode is executed. * Note this still allows to set initial values * at the start of the microcode */ PARAM1 <= DE_PARAM1; PARAM2 <= DE_PARAM2; `ifdef DEBUG_PC_ADDRESS $display("Running command at %04x (%08x)",INSTRUCTION_LOCATION,INSTRUCTION); `endif ProgCount <= INSTRUCTION_LOCATION+{12'b0,instr_end}; INSTRUCTION_BUFFER<=INSTRUCTION[23:0]; end IN_MOD <= DE_IN_MOD; OUT_MOD <= DE_OUT_MOD; RM <= DE_RM; ERROR <= DE_ERROR; HALT <= DE_HALT; Wbit <= DE_Wbit; Sbit <= DE_Sbit; opcode_size <= DE_opcode_size; memio_address_select<=DE_memio_address_select; reg_read_port1_addr <= DE_reg_read_port1_addr; reg_read_port2_addr <= DE_reg_read_port2_addr; reg_write_addr <= DE_reg_write_addr; MEM_OR_IO <= DE_MEM_OR_IO; in_alu1_sel1 <= DE_in_alu1_sel1; in_alu1_sel2 <= DE_in_alu1_sel2; ALU_1OP <= DE_ALU_1OP; if ( (ucode_seq_addr==`UCODE_NO_INSTRUCTION) && (ucode_seq_addr_entry!=`UCODE_NO_INSTRUCTION) )begin /*switch to microcode decoding*/ ucode_seq_addr <= ucode_seq_addr_entry; SIMPLE_MICRO <= 1; /*keep state the same and rerun decode this time with all the data from the microcode rom*/ jump_req <= 0; end else begin state <= next_state; if ( SIMPLE_MICRO == 0 ) begin jump_req <= 0; end end end end `PROC_DE_LOAD_REG_TO_PARAM:begin PARAM2<=reg_read_port2_data; case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end `PROC_DE_LOAD_8_PARAM:begin if(opcode_size==0)begin if({Sbit,Wbit}==2'b11)begin /*signed "16bit" read*/ PARAM1 <= {{8{INSTRUCTION_BUFFER[23:23]}},INSTRUCTION_BUFFER[23:16]}; end else begin PARAM1[7:0] <= INSTRUCTION_BUFFER[23:16]; end case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end else begin if({Sbit,Wbit}==2'b11)begin /*signed "16bit" read*/ PARAM1 <= {{8{INSTRUCTION_BUFFER[15:15]}},INSTRUCTION_BUFFER[15:8]}; end else begin PARAM1[7:0] <= INSTRUCTION_BUFFER[15:8]; end end case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end `PROC_DE_LOAD_16_PARAM:begin if(opcode_size==0)begin PARAM1[7:0] <= INSTRUCTION_BUFFER[23:16]; PARAM1[15:8] <= INSTRUCTION_BUFFER[15:8]; end else begin PARAM1[15:8] <= INSTRUCTION_BUFFER[7:0]; PARAM1[7:0] <= INSTRUCTION_BUFFER[15:8]; end case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end `PROC_MEMIO_READ:begin /*Decode MOD R/M, read the data and place it to PARAM1*/ case (IN_MOD) 3'b000, 3'b001, 3'b010:begin case (RM) 3'b000:begin /*[BX]+[SI]*/ `unimpl_addressing_mode end 3'b001:begin /*[BX]+[SI]*/ `unimpl_addressing_mode end 3'b010:begin /*[BP]+[SI]*/ `unimpl_addressing_mode end 3'b011:begin /*[BP]+[DI]*/ `unimpl_addressing_mode end 3'b100:begin /*[SI]*/ reg_read_port1_addr <= 4'b1110; state <= `PROC_MEMIO_READ_SETADDR; end 3'b101:begin /*[DI]*/ reg_read_port1_addr <= 4'b1111; state <= `PROC_MEMIO_READ_SETADDR; end 3'b110:begin /*d16 */ `unimpl_addressing_mode end 3'b111:begin /*[BX]*/ reg_read_port1_addr <= 4'b1011; state <= `PROC_MEMIO_READ_SETADDR; end endcase if(IN_MOD!=3'b000)begin /*Actually check if 01 and add the 8bits or if 10 add the 16bits ....*/ `unimpl_addressing_mode; end end 3'b110:begin /* SP Indirect read*/ reg_read_port1_addr <= 4'b1100; state <= `PROC_MEMIO_READ_SETADDR; end default:begin `unimpl_addressing_mode end endcase end `PROC_MEMIO_READ_SETADDR:begin if(memio_address_select==0) BIU_ADDRESS_INPUT <= reg_read_port1_data[15:0]; else BIU_ADDRESS_INPUT <= ALU_1O; if ( BIU_VALID_DATA == 1 ) begin state <= `PROC_EX_STATE_ENTRY; PARAM2 <= BIU_DATA; biu_read_request <= 0; biu_data_direction <= 0; end else begin biu_data_direction <= 1; biu_read_request <= 1; end end `PROC_NEXT_INSTRUCTION:begin /*necessary for biu to see we went on another state from decode to give us a new instruction*/ state <= `PROC_DE_STATE_ENTRY; end `PROC_EX_STATE_ENTRY:begin FLAGS[7:0] <= ALU_1FLAGS[7:0]; case(OUT_MOD) 3'b000, 3'b001, 3'b010 : begin if(memio_address_select==1) state <= `PROC_MEMIO_WRITE; else case (RM) /* Duplicate code with write... */ 3'b000:begin /*[BX]+[SI]*/ `unimpl_addressing_mode end 3'b001:begin /*[BX]+[SI]*/ `unimpl_addressing_mode end 3'b010:begin /*[BP]+[SI]*/ `unimpl_addressing_mode end 3'b011:begin /*[BP]+[DI]*/ `unimpl_addressing_mode end 3'b100:begin /*[SI]*/ reg_read_port1_addr <= 4'b1110; state <= `PROC_MEMIO_WRITE; end 3'b101:begin /*[DI]*/ reg_read_port1_addr <= 4'b1111; state <= `PROC_MEMIO_WRITE; end 3'b110:begin /*d16 */ `unimpl_addressing_mode end 3'b111:begin /*[BX]*/ reg_read_port1_addr <= 4'b1011; state <= `PROC_MEMIO_WRITE; end endcase end 3'b011:begin reg_write_we <= 0; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_DE_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end 3'b100:begin /*No output*/ if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_DE_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end 3'b101:begin /* Program Counter*/ BIU_ADDRESS_INPUT <= ALU_1O[15:0]; jump_req <= 1; instruction_size_init <= 1; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_DE_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end 3'b110:begin /* SP Indirect write*/ reg_read_port1_addr <= 4'b1100; state <= `PROC_MEMIO_WRITE; end 3'b111:begin /* Write to PRAM1 (for microcode calculations) */ PARAM1 <= ALU_1O; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_DE_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end default:begin `unimpl_addressing_mode end endcase end `PROC_MEMIO_WRITE:begin /* if memio_address_select == 0 ADDRESS: reg_read_port1_data DATA:ALU1_O */ /* if memio_address_select == 1 ADDRESS: ALU1_O DATA: reg_read_port1_data */ biu_write_request <= 1; if(memio_address_select==0) BIU_ADDRESS_INPUT <= reg_read_port1_data[15:0]; else BIU_ADDRESS_INPUT <= ALU_1O; if (write == 0) begin biu_write_request <= 0; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_DE_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end end `PROC_NEXT_MICROCODE:begin ucode_seq_addr <= ucode_seq_addr_entry; /*Reused for next address*/ if( ucode_seq_addr_entry == `UCODE_NO_INSTRUCTION )begin /*Finished microcode*/ SIMPLE_MICRO <= 0; end state <= `PROC_DE_STATE_ENTRY; reg_write_we <= 1; end default:begin end endcase end `undef unimpl_addressing_mode endmodule