`timescale 1ns/1ps module tb; wire clock; reg reset; reg clk_enable; wire [19:0]address_bus; wire [15:0]data_bus; wire rd,wr,romcs,HALT; processor p(clock,reset,address_bus,data_bus,rd,wr,HALT); rom bootrom(address_bus,data_bus,rd,romcs); `define CPU_SPEED 1000 clock_gen #(.FREQ(1000)) u1(clk_enable, clock); assign romcs=0; initial begin $dumpfile("test.lx2"); $dumpvars(0,p); clk_enable <= 1; #($random%500) reset = 0; #(`CPU_SPEED) reset = 1; #(`CPU_SPEED*55) //$writememh("register_dump.txt", registers); #50 $finish; end endmodule /*Clock generator*/ module clock_gen (input enable, output reg clk); parameter FREQ = 1000; // in HZ parameter PHASE = 0; // in degrees parameter DUTY = 50; // in percentage real clk_pd = 1.0/FREQ * 1000000; // convert to ms real clk_on = DUTY/100.0 * clk_pd; real clk_off = (100.0 - DUTY)/100.0 * clk_pd; real quarter = clk_pd/4; real start_dly = quarter * PHASE/90; reg start_clk; initial begin end // Initialize variables to zero initial begin clk <= 0; start_clk <= 0; end // When clock is enabled, delay driving the clock to one in order // to achieve the phase effect. start_dly is configured to the // correct delay for the configured phase. When enable is 0, // allow enough time to complete the current clock period always @ (posedge enable or negedge enable) begin if (enable) begin #(start_dly) start_clk = 1; end else begin #(start_dly) start_clk = 0; end end // Achieve duty cycle by a skewed clock on/off time and let this // run as long as the clocks are turned on. always @(posedge start_clk) begin if (start_clk) begin clk = 1; while (start_clk) begin #(clk_on) clk = 0; #(clk_off) clk = 1; end clk = 0; end end endmodule