`include "proc_state_def.v" `include "alu_header.v" module mux4 (in1,in2,in3,in4, sel,out); input [0:1] sel; parameter WIDTH=16; input [WIDTH-1:0] in1,in2,in3,in4; output [WIDTH-1:0] out; assign out = (sel == 'b00) ? in1 : (sel == 'b01) ? in2 : (sel == 'b10) ? in3 : in4; endmodule module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write, output reg HALT,output reg ERROR); /*** Global Definitions ***/ // State reg [3:0] state; // Registers reg [19:0] ProgCount; reg [15:0] CIR; reg [15:0] PARAM1; reg [15:0] PARAM2; reg unaligned_access; reg [1:0]IN_MOD; reg [2:0]IN_RM; reg Wbit; reg [15:0]FLAGS; /* . . . . O D I T S Z . A . P . C */ // C - Carry flag : carry out or borrow into the high order bit (8bit/16bit) // // P - Parity flag : is set if result has even parity // // A - Auxiliary flag : carry out from the low nibble to the high nibble or // an equiv borrow. Used by decimal arithmetic instructions // // Z - Zero flag : Set when result of Operation is zero // // S - Sign flag : set if the high order bit of the result is 1. aka the sign // of the result // // T - Trap flag : Set the cpu into single step mode where it generates an // interrupt after each instruction // // I - Interrupt flag : 0: interrupts are masked // // D - Direction flag : 1: string instructions decrement 0: they increment // // O - Overflow flag : set on arythmetic overflow // Execution units reg [1:0] in1_sel; reg [1:0] in2_sel; /* out_sel : { EXTRA_FUNCTIONS_BIT[0:0], MOD_OR_EXTRA_FUNCTION[1:0] } */ reg [2:0] out_sel; /*** RESET LOGIC ***/ always @(negedge reset) begin if (reset==0) begin @(posedge clock); state=`PROC_HALT_STATE; ProgCount=0;//TODO: Reset Vector HALT=0; reg_write_we=1; reg_read_oe=1; unaligned_access=0; ALU_1OE=1; @(posedge reset) @(negedge clock); state=`PROC_IF_STATE_ENTRY; IN_MOD=2'b11; end end /*** ALU and EXEC stage logic ***/ //Architectural Register file reg [3:0] reg_write_addr; reg [15:0] reg_write_data; reg reg_write_we; reg [3:0] reg_read_addr; reg [15:0] reg_read_data; reg reg_read_oe; register_file register_file(reg_write_addr,reg_write_data,reg_write_we,reg_read_addr,reg_read_data,reg_read_oe); //ALU mux4 #(.WIDTH(16)) MUX16_1A( PARAM1, reg_read_data, {ProgCount[14:0],unaligned_access}, /*THATS NOT ALL OF ADDR Bus, is that irrelevant with segmentation??*/ 16'b0, in1_sel, ALU_1A); mux4 #(.WIDTH(16)) MUX16_1B( PARAM2, reg_read_data, {ProgCount[14:0],unaligned_access}, /*THATS NOT ALL OF ADDR Bus, is that irrelevant with segmentation??*/ 16'b0, in2_sel, ALU_1B); wire [15:0] ALU_1A; wire [15:0] ALU_1B; wire [15:0] ALU_1O; reg [`ALU_OP_BITS-1:0]ALU_1OP; reg ALU_1OE; wire [7:0] ALU_FLAGS; ALU ALU(ALU_1A,ALU_1B,ALU_1OE,ALU_1O,ALU_1OP,ALU_FLAGS,Wbit); /*** Processor stages ***/ `define invalid_instruction state=`PROC_IF_STATE_ENTRY;ERROR=1;IN_MOD=2'b11; `define start_aligning_instruction if(unaligned_access==0)begin ProgCount=ProgCount+1; external_address_bus <= ProgCount; end /*we normally don't advance PC in case of singly byte unaligning instructions leasving us with two instructions in one read so do that here*/ `define start_unaligning_instruction unaligned_access=~unaligned_access; always @(negedge clock) begin case(state) `PROC_IF_WRITE_CIR:begin if(unaligned_access)begin CIR[15:8] <= external_data_bus[7:0]; ProgCount=ProgCount+1; state=`PROC_IF_STATE_EXTRA_FETCH_SET; end else begin CIR <= external_data_bus; state=`PROC_DE_STATE_ENTRY; end end `PROC_IF_STATE_EXTRA_FETCH:begin CIR[7:0] <= external_data_bus[15:8]; state=`PROC_DE_STATE_ENTRY; end `PROC_EX_STATE_EXIT:begin case(out_sel) 3'b011:begin reg_write_we=0; state=`PROC_IF_STATE_ENTRY; end 3'b101:begin ProgCount=ALU_1O[15:1]; unaligned_access=ALU_1O[0:0]; state=`PROC_IF_STATE_ENTRY; end 3'b100:begin state=`PROC_IF_STATE_ENTRY; end default:begin `invalid_instruction end endcase end `PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin external_address_bus = ProgCount; state=`PROC_DE_LOAD_16_EXTRA_FETCH; end `PROC_MEMIO_SETADDR:begin external_address_bus = {1'b0,reg_read_data[15:1]}; state=reg_read_data[0:0]?`PROC_MEMIO_GET_UNALIGNED_DATA:`PROC_MEMIO_GET_ALIGNED_DATA; end endcase end always @(posedge clock) begin case(state) `PROC_HALT_STATE:begin end `PROC_IF_STATE_ENTRY:begin ERROR=0; $display("Fetched instruction at %04x",{ProgCount[18:0],unaligned_access}); external_address_bus <= ProgCount; read <= 0; write <= 1; reg_read_oe=1; reg_write_we=1; ALU_1OE=1; state=`PROC_IF_WRITE_CIR; end `PROC_IF_STATE_EXTRA_FETCH_SET:begin external_address_bus <= ProgCount; state=`PROC_IF_STATE_EXTRA_FETCH; end /* 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 */ /* AFTER THE IF STAGE WE HAVE THE FRIST BYTE OF THE * INSTRUCTION ADN THE ONE FOLLOWING, ALLIGNED CORRECTLY TO * CIR */ `PROC_DE_STATE_ENTRY:begin case(CIR[15:10]) 6'b000001 : begin /* ADD, ... */ if ( CIR[9:9] == 0 )begin /* Add Immediate word/byte to accumulator */ /* 0 0 0 0 0 1 0 W | DATA | DATA if W |*/ Wbit=CIR[8:8]; if(Wbit) `start_unaligning_instruction else `start_aligning_instruction IN_MOD=2'b11; in1_sel=2'b00; in2_sel=2'b01; out_sel=3'b011; reg_read_addr={CIR[8:8],3'b000}; reg_write_addr={CIR[8:8],3'b000}; reg_read_oe=0; ALU_1OE=0; ALU_1OP=`ALU_OP_ADD; if(CIR[8:8]==1) state=`PROC_DE_LOAD_16_PARAM; else begin PARAM1[7:0]=CIR[7:0]; state=`PROC_EX_STATE_ENTRY; end end else begin `invalid_instruction end end 6'b100000 : begin /* ADD, ADC, SUB, SBB, CMP , AND, ... */ case (CIR[5:3]) 3'b000 : begin /* Add Immediate word/byte to register/memory */ /* 1 0 0 0 0 0 S W | MOD 0 0 0 R/M | < DISP LO > | < DISP HI > | DATA | DATA if W | */ `start_aligning_instruction Wbit=CIR[8:8]; IN_MOD=2'b11; in1_sel=2'b00; in2_sel=2'b01; out_sel={1'b0,CIR[7:6]}; reg_read_addr={CIR[8:8],CIR[2:0]}; reg_write_addr={CIR[8:8],CIR[2:0]}; reg_read_oe=0; ALU_1OE=0; ALU_1OP=`ALU_OP_ADD; state=`PROC_DE_LOAD_16_PARAM; if(CIR[8:8]==1) state=`PROC_DE_LOAD_16_PARAM; else begin `invalid_instruction /*do 8bit loads*/ end end default:begin `invalid_instruction end endcase end 6'b101100, 6'b101101:begin /* MOV - Move Immediate byte to register */ /* 1 0 1 1 W REG | DATA | DATA if W |*/ Wbit=CIR[11:11]; if(Wbit) `start_unaligning_instruction else `start_aligning_instruction IN_MOD=2'b11; in1_sel=2'b00; in2_sel=2'b00; out_sel=3'b011; reg_write_addr={1'b0,CIR[10:8]}; PARAM1[7:0]=CIR[7:0]; PARAM2=0; ALU_1OE=0; ALU_1OP=`ALU_OP_ADD; state=`PROC_EX_STATE_ENTRY; end 6'b101110, 6'b101111 : begin /*MOV - Move Immediate word to register*/ Wbit=CIR[11:11]; if(Wbit) `start_unaligning_instruction else `start_aligning_instruction IN_MOD=2'b11; in1_sel=2'b00; in2_sel=2'b00; out_sel=3'b011; reg_write_addr={1'b1,CIR[10:8]}; ALU_1OE=0; ALU_1OP=`ALU_OP_ADD; PARAM2=0; state=`PROC_DE_LOAD_16_PARAM; end 6'b100010 : begin /* MOV - Reg/Mem to/from register */ /* 1 0 0 0 1 0 D W | MOD REG REG | < DISP LO > | < DISP HI > |*/ `start_aligning_instruction IN_MOD=CIR[7:6]; IN_RM=CIR[2:0]; Wbit=CIR[8:8]; if(CIR[9:9] == 1)begin /* to reg */ IN_MOD=CIR[7:6]; if(IN_MOD==2'b11)begin in1_sel=2'b01; reg_read_addr=CIR[2:0]; end else begin in1_sel=2'b00; end in2_sel=2'b00; out_sel=3'b011; reg_write_addr={CIR[8:8],CIR[5:3]}; end else begin `invalid_instruction end ALU_1OE=0; ALU_1OP=`ALU_OP_ADD; PARAM2=0; state=`PROC_DE_LOAD_16_PARAM; if ( IN_MOD == 2'b11 ) state=`PROC_EX_STATE_ENTRY; else state=`RPOC_MEMIO_READ; end 6'b010000,//INC 6'b010001,//INC 6'b010010,//DEC 6'b010011:begin//DEC /* DEC - Decrement Register */ /* | 0 1 0 0 1 REG | */ /* INC - Increment Register */ /* | 0 1 0 0 0 REG | */ `start_unaligning_instruction Wbit=1; in1_sel=2'b01; in2_sel=2'b00; out_sel=3'b011; IN_MOD=2'b11; PARAM2=1; reg_read_addr={1'b1,CIR[10:8]}; reg_write_addr={1'b1,CIR[10:8]}; reg_read_oe=0; ALU_1OE=0; if(CIR[11:11]==0) ALU_1OP=`ALU_OP_ADD; else ALU_1OP=`ALU_OP_SUB; state=`PROC_EX_STATE_ENTRY; end 6'b111111 : begin /* INC */ if (CIR[9:9] == 1 ) begin case (CIR[5:3]) 3'b000 :begin /* INC - Register/Memory */ /* 1 1 1 1 1 1 1 W | MOD 0 0 0 R/M | < DISP LO> | < DISP HI> */ `start_aligning_instruction Wbit=CIR[8:8]; IN_MOD=CIR[7:6]; in1_sel=2'b00;/* number 1 */ in2_sel=(CIR[7:6]==2'b11)? 2'b01 : 2'b00; out_sel={1'b0,CIR[7:6]}; PARAM1=1; reg_read_addr={1'b0,CIR[2:0]}; reg_write_addr={1'b0,CIR[2:0]}; reg_read_oe=0; ALU_1OE=0; ALU_1OP=`ALU_OP_ADD; if ( CIR[7:6] == 2'b11 ) state=`PROC_EX_STATE_ENTRY; else state=`RPOC_MEMIO_READ; end default:begin `invalid_instruction end endcase end else begin `invalid_instruction end end 6'b111101 : begin /*HLT, CMC, TEST, NOT, NEG, MUL, IMUL, .... */ case (CIR[9:8]) 2'b00:begin /* HLT - Halt */ /* 1 1 1 1 0 1 0 0 | */ `start_unaligning_instruction IN_MOD=2'b11; HALT=1; state=`PROC_HALT_STATE; end default:begin `invalid_instruction; end endcase end 6'b001111 : begin if ( CIR[9:9] == 0 ) begin /* CMP - Compare Immediate with accumulator */ /* 0 0 1 1 1 1 0 W | DATA | DATA if W |*/ /* */ /* NOTE: 8086 doc doesn't show the third byte but the */ /* W flag and my assembler seem to disagree */ Wbit=CIR[8:8]; if(Wbit) `start_unaligning_instruction else `start_aligning_instruction IN_MOD=2'b11; in1_sel=2'b00; in2_sel=2'b01; reg_read_addr={CIR[8:8],3'b000}; reg_read_oe=0; out_sel=3'b100; ALU_1OE=0; ALU_1OP=`ALU_OP_SUB; if(CIR[8:8]==1) state=`PROC_DE_LOAD_16_PARAM; else begin PARAM1[7:0]=CIR[7:0]; state=`PROC_EX_STATE_ENTRY; end end else begin `invalid_instruction end end 6'b011100, 6'b011101, 6'b011110, 6'b011111:begin /* Conditional relative jumps */ /* Jump on Zero */ /* 0 1 1 1 0 1 0 0 | IP-INC8 |*/ /* Jump on Sign */ /* 0 1 1 1 1 0 0 0 | IP-INC8 |*/ /* Jump on not Sign */ /* 0 1 1 1 1 0 0 1 | IP-INC8 |*/ /* .... */ `start_aligning_instruction Wbit=1; in1_sel=2'b10; in2_sel=2'b00; PARAM2={8'b00000000,CIR[7:0]}; ALU_1OE=0; ALU_1OP=`ALU_OP_ADD; out_sel=3'b101; if(CIR[7:7]==1) begin `invalid_instruction; // We don't do singed add 8bit to unsigned 16bit end else begin case(CIR[11:9]) 4'b000: begin /* Jump on (not) Overflow */ if(FLAGS[11:11]==CIR[8:8]) state=`PROC_IF_STATE_ENTRY; else begin state=`PROC_EX_STATE_ENTRY; end end 4'b010: begin /* Jump on (not) Zero */ if(FLAGS[6:6]==CIR[8:8]) state=`PROC_IF_STATE_ENTRY; else state=`PROC_EX_STATE_ENTRY; end 4'b100: begin /* Jump on (not) Sign */ if(FLAGS[7:7]==CIR[8:8]) state=`PROC_IF_STATE_ENTRY; else state=`PROC_EX_STATE_ENTRY; end 4'b101: begin /* Jump on (not) Parity */ if(FLAGS[2:2]==CIR[8:8]) state=`PROC_IF_STATE_ENTRY; else state=`PROC_EX_STATE_ENTRY; end default:begin `invalid_instruction; /*We don't support that condition*/ end endcase end end default:begin `invalid_instruction end endcase end `PROC_DE_LOAD_16_PARAM:begin if(unaligned_access==1)begin PARAM1[7:0] = external_data_bus[7:0]; ProgCount=ProgCount+1; state=`PROC_DE_LOAD_16_EXTRA_FETCH_SET; end else begin PARAM1[7:0] = external_data_bus[15:8]; PARAM1[15:8] = external_data_bus[7:0]; ProgCount=ProgCount+1; state=`PROC_EX_STATE_ENTRY; end end `PROC_DE_LOAD_16_EXTRA_FETCH:begin PARAM1[15:8] = external_data_bus[15:8]; state=`PROC_EX_STATE_ENTRY; end `RPOC_MEMIO_READ:begin /*Decode MOD R/M, read the data and place it to PARAM1*/ case (IN_RM) 3'b000:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b001:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b010:begin /*[BP]+[SI]*/ `invalid_instruction end 3'b011:begin /*[BP]+[DI]*/ `invalid_instruction end 3'b100:begin /*[SI]*/ reg_read_addr=4'b1110; reg_read_oe=0; state=`PROC_MEMIO_SETADDR; end 3'b101:begin /*[DI]*/ reg_read_addr=4'b1111; reg_read_oe=0; state=`PROC_MEMIO_SETADDR; end 3'b110:begin /*d16 */ `invalid_instruction end 3'b111:begin /*[BX]*/ reg_read_addr=4'b1011; reg_read_oe=0; state=`PROC_MEMIO_SETADDR; end endcase if(IN_MOD!=2'b00)begin /*Actually check if 01 and add the 8bits or if 10 add the 16bits ....*/ `invalid_instruction; end end `PROC_MEMIO_GET_ALIGNED_DATA:begin PARAM1=(Wbit==1)? external_data_bus : {8'b00000000,external_data_bus[15:8]} ; state=`PROC_EX_STATE_ENTRY; end `PROC_MEMIO_GET_UNALIGNED_DATA:begin if(Wbit==1) begin `invalid_instruction //easy to implement, get the other byte from the next address end else begin PARAM1={8'b00000000,external_data_bus[7:0]}; state=`PROC_EX_STATE_ENTRY; end end `PROC_EX_STATE_ENTRY:begin reg_write_data=ALU_1O; FLAGS[7:0] = ALU_FLAGS[7:0]; state=`PROC_EX_STATE_EXIT; ERROR=0; end endcase end endmodule