`timescale 1ns/1ps module clock_gen (input enable, output reg clk); parameter FREQ = 1000; // in HZ parameter PHASE = 0; // in degrees parameter DUTY = 50; // in percentage real clk_pd = 1.0/FREQ * 1000000; // convert to ms real clk_on = DUTY/100.0 * clk_pd; real clk_off = (100.0 - DUTY)/100.0 * clk_pd; real quarter = clk_pd/4; real start_dly = quarter * PHASE/90; reg start_clk; initial begin end // Initialize variables to zero initial begin clk <= 0; start_clk <= 0; end // When clock is enabled, delay driving the clock to one in order // to achieve the phase effect. start_dly is configured to the // correct delay for the configured phase. When enable is 0, // allow enough time to complete the current clock period always @ (posedge enable or negedge enable) begin if (enable) begin #(start_dly) start_clk = 1; end else begin #(start_dly) start_clk = 0; end end // Achieve duty cycle by a skewed clock on/off time and let this // run as long as the clocks are turned on. always @(posedge start_clk) begin if (start_clk) begin clk = 1; while (start_clk) begin #(clk_on) clk = 0; #(clk_off) clk = 1; end clk = 0; end end endmodule module processor ( input clock, input reset , output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write); /* State */ reg [1:0] state; reg start=0; reg instruction_finished; /* Registers */ reg [19:0] ProgCount; /* RESET LOGIC */ always @(negedge reset) begin if (reset==0) begin @(posedge clock); state=0; ProgCount=0;//TODO: Reset Vector #10 start=1; end end /* CLOCK LOGIC */ always @(posedge clock) begin if(instruction_finished) begin state =0; end else begin if (clock && start==1) begin state=state+1; end end end always @(state) begin if (state==2) begin instruction_finished=1; end else begin instruction_finished=0; end end /* Processor stages */ always @(state) begin if (state==0) begin external_address_bus <= ProgCount; read <= 0; write <= 1; end end endmodule