/* processor.v - implementation of most functions of the 9086 processor This file is part of the 9086 project. Copyright (c) 2023 Efthymios Kritikos This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ `include "proc_state_def.v" `include "alu_header.v" `include "config.v" `include "ucode_header.v" //HALT: active high //ERROR: active high //IOMEM: 1=IO 0=MEM //write: active low //read: active low //reset: active low module processor ( input clock, input reset, output reg [19:0] external_address_bus, inout [15:0] external_data_bus,output reg read, output reg write,output reg BHE,output reg IOMEM, output reg HALT,output reg ERROR); /*if we don't read, output the register to have the bus stable by the write falling edge*/ reg [15:0] data_bus_output_register; assign external_data_bus=read?data_bus_output_register:16'hz; /*** Global Definitions ***/ reg [`PROC_STATE_BITS-1:0] state; /*############ Decoder ########################################################## */ wire Wbit, Sbit, opcode_size; wire [`PROC_STATE_BITS-1:0] next_state; wire [2:0]RM; wire [15:0]DE_PARAM1;// Input param1 form decoder to alu wire [15:0]DE_PARAM2; wire DE_ERROR,DE_HALT; wire [3:0]DE_reg_read_port1_addr,DE_reg_write_addr,DE_reg_read_port2_addr; wire [11:0]DE_REGISTER_CONTROL; wire [2:0]INSTRUCTION_INFO; wire [1:0]DECODER_SIGNALS; wire [`UCODE_ADDR_BITS-1:0] ucode_seq_addr_entry; reg SIMPLE_MICRO; /* output simple decodings (=0) or microcode data (=1) */ wire [2:0] DE_instruction_size; reg instruction_size_init; wire [2:0] instruction_size; assign instruction_size = instruction_size_init ? 3'b010 : DE_instruction_size; wire memio_address_select; wire MEM_OR_IO; decoder decoder( .CIR(CIR), .FLAGS(FLAGS), .INSTRUCTION_INFO(INSTRUCTION_INFO), .DECODER_SIGNALS(DECODER_SIGNALS), .next_state(next_state), .IN_MOD(IN_MOD), .RM(RM), .PARAM1(DE_PARAM1), .PARAM2(DE_PARAM2), .in_alu1_sel1(in_alu1_sel1), .in_alu1_sel2(in_alu1_sel2), .OUT_MOD(OUT_MOD), .REGISTER_FILE_CONTROL(DE_REGISTER_CONTROL), .ALU_1OP(ALU_1OP), .seq_addr_entry(ucode_seq_addr_entry), .SIMPLE_MICRO(SIMPLE_MICRO), .seq_addr_input(ucode_seq_addr), .instruction_size(DE_instruction_size), .memio_address_select(memio_address_select), .MEM_OR_IO(MEM_OR_IO) ); assign Wbit=INSTRUCTION_INFO[2:2]; assign Sbit=INSTRUCTION_INFO[1:1]; assign opcode_size=INSTRUCTION_INFO[0:0]; assign DE_reg_write_addr=DE_REGISTER_CONTROL[11:8]; assign DE_reg_read_port1_addr=DE_REGISTER_CONTROL[7:4]; assign DE_reg_read_port2_addr=DE_REGISTER_CONTROL[3:0]; assign DE_HALT=DECODER_SIGNALS[0:0]; assign DE_ERROR=DECODER_SIGNALS[1:1]; reg [`UCODE_ADDR_BITS-1:0] ucode_seq_addr; /*############ REGISTERS ########################################################## */ reg [15:0] CIR; reg [15:0] PARAM1; reg [15:0] PARAM2; // verilator lint_off UNDRIVEN reg [15:0] FLAGS; // verilator lint_on UNDRIVEN //Architectural Register file reg [3:0] reg_write_addr; wire [15:0] reg_write_data; reg reg_write_we; reg [3:0] reg_read_port1_addr; reg [15:0] reg_read_port1_data; reg [3:0] reg_read_port2_addr; reg [15:0] reg_read_port2_data; reg [1:0] reg_write_in_sel; mux4 #(.WIDTH(16)) REG_FILE_WRITE_IN_MUX( ALU_1O, 16'hz, 16'hz, 16'hz, reg_write_in_sel, reg_write_data); register_file register_file( .write_port1_addr(reg_write_addr), .write_port1_data(reg_write_data), .write_port1_we(reg_write_we), .read_port1_addr(reg_read_port1_addr), .read_port1_data(reg_read_port1_data), .read_port2_addr(reg_read_port2_addr), .read_port2_data(reg_read_port2_data) ); reg [15:0] ProgCount; /*############ ALU / Execution units ########################################################## */ // ALU 1 reg [1:0] in_alu1_sel1; reg [1:0] in_alu1_sel2; /* OUT_MOD : { EXTRA_FUNCTIONS_BIT[0:0], MOD_OR_EXTRA_FUNCTION[1:0] } */ reg [2:0] IN_MOD; reg [2:0] OUT_MOD; mux4 #(.WIDTH(16)) MUX16_1A( /*0*/ PARAM1, /*1*/ reg_read_port1_data, /*2*/ ProgCount[15:0], /*3*/ 16'd0, /*0 Constant*/ in_alu1_sel1, ALU_1A); mux4 #(.WIDTH(16)) MUX16_1B( /*0*/ PARAM2, /*1*/ reg_read_port2_data, /*2*/ ProgCount[15:0], /*3*/ 16'd0, /*0 Constant*/ in_alu1_sel2, ALU_1B); wire [15:0] ALU_1A; wire [15:0] ALU_1B; wire [15:0] ALU_1O; reg [`ALU_OP_BITS-1:0]ALU_1OP; wire [7:0] ALU_1FLAGS; ALU ALU1( .A(ALU_1A), .B(ALU_1B), .OUT(ALU_1O), .op(ALU_1OP), .FLAGS(ALU_1FLAGS), .Wbit(Wbit) ); /*############ Processor state machine ########################################################## */ /*** RESET LOGIC ***/ /* verilator lint_off MULTIDRIVEN */ always @(negedge reset) begin state <= `PROC_HALT_STATE; //TODO: race condition ?? end always @(posedge reset) begin state <= `PROC_RESET; end /* verilator lint_on MULTIDRIVEN */ /*** Processor stages ***/ `define invalid_instruction state <= `PROC_IF_STATE_ENTRY;ERROR <= 1; always @(posedge clock) begin case(state) `PROC_RESET:begin ucode_seq_addr <= `UCODE_NO_INSTRUCTION; ProgCount <= 'hFFF0;//TODO: Implement Segmentation and set to zero HALT <= 0; ERROR <= 0; SIMPLE_MICRO <= 0; reg_write_we <= 1; instruction_size_init <= 1; state <= `PROC_IF_STATE_ENTRY; end `PROC_HALT_STATE:begin end `PROC_IF_STATE_ENTRY:begin BHE <= 0; external_address_bus <= {4'b0,ProgCount}; IOMEM <= 0; read <= 0; write <= 1; reg_write_we <= 1; state <= `PROC_IF_WRITE_CIR; reg_write_in_sel <= 2'b00; end `PROC_IF_WRITE_CIR:begin `ifdef DEBUG_PC_ADDRESS /* Weird (possible bug) where even though the * testbench stop the clock after ERROR gets * raised the logic for the rising edge still * gets triggered printing this debug message. */ if(ERROR!=1)begin if(instruction_size==1) $display("Fetched instruction at %0x",ProgCount - 1); else $display("Fetched instruction at %0x",ProgCount - 0); end `endif /*I built the entire decode stage with CIR * being big endian so just convert it here*/ if(instruction_size==1)begin /*Half on CIR half on this address */ state <= `PROC_DE_STATE_ENTRY; if(ProgCount[0:0]==1)begin CIR <= {CIR[7:0],external_data_bus[15:8]}; end else begin CIR <= {CIR[7:0],external_data_bus[7:0]}; end ProgCount <= ProgCount+1; end else begin if(ProgCount[0:0]==1)begin /* Half on this address half on the next*/ ProgCount <= ProgCount+1; CIR[15:8] <= external_data_bus[15:8]; state <= `PROC_IF_STATE_EXTRA_FETCH_SET; end else begin /* Both on this address! */ ProgCount <= ProgCount+2; CIR <= {external_data_bus[7:0],external_data_bus[15:8]}; state <= `PROC_DE_STATE_ENTRY; end end end `PROC_IF_STATE_EXTRA_FETCH_SET:begin external_address_bus <= {4'b0,ProgCount}; BHE <= 0; state <= `PROC_IF_STATE_EXTRA_FETCH; end `PROC_IF_STATE_EXTRA_FETCH:begin CIR[7:0] <= external_data_bus[7:0]; ProgCount <= ProgCount+1; state <= `PROC_DE_STATE_ENTRY; end `PROC_DE_STATE_ENTRY:begin external_address_bus <= {4'b0,ProgCount}; if(SIMPLE_MICRO==0)begin /*This flag is set at reset and jump because * at IF we need to know the size of the * previous instruction (specifically if it was * a single byte and the value would be * incorrect in both cases. So when it gets * set reset it only at the start of the next * 8086 instruction */ instruction_size_init <= 0; /* We cannot set these directly within * microcode so don't overwrite useful values * each time the next microcode is executed. * Note this still allows to set initial values * at the start of the microcode */ PARAM1 <= DE_PARAM1; PARAM2 <= DE_PARAM2; end ERROR <= DE_ERROR; HALT <= DE_HALT; reg_read_port1_addr <= DE_reg_read_port1_addr; reg_read_port2_addr <= DE_reg_read_port2_addr; reg_write_addr <= DE_reg_write_addr; if ( (ucode_seq_addr==`UCODE_NO_INSTRUCTION) && (ucode_seq_addr_entry!=`UCODE_NO_INSTRUCTION) )begin /*switch to microcode decoding*/ ucode_seq_addr <= ucode_seq_addr_entry; SIMPLE_MICRO <= 1; /*keep state the same and rerun decode this time with all the data from the microcode rom*/ end else begin state <= next_state; end end `PROC_DE_LOAD_REG_TO_PARAM:begin PARAM2<=reg_read_port2_data; case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end `PROC_DE_LOAD_8_PARAM:begin if(opcode_size==0)begin if({Sbit,Wbit}==2'b11)begin /*signed "16bit" read*/ PARAM1 <= {{8{CIR[7:7]}},CIR[7:0]}; end else begin PARAM1[7:0] <= CIR[7:0]; end case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end else begin if(ProgCount[0:0]==1)begin if({Sbit,Wbit}==2'b11)begin /*signed "16bit" read*/ PARAM1 <= {{8{external_data_bus[15:15]}},external_data_bus[15:8]}; end else begin PARAM1[7:0] <= external_data_bus[15:8]; end end else begin if({Sbit,Wbit}==2'b11)begin /*signed "16bit" read*/ PARAM1 <= {{8{external_data_bus[7:7]}},external_data_bus[7:0]}; end else begin PARAM1[7:0] <= external_data_bus[7:0]; end end ProgCount <= ProgCount+1; case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end end `PROC_DE_LOAD_16_PARAM:begin if(opcode_size==0)begin PARAM1[7:0] <= CIR[7:0]; if(ProgCount[0:0]==1)begin PARAM1[15:8] <= external_data_bus[15:8]; end else begin PARAM1[15:8] <= external_data_bus[7:0]; end ProgCount <= ProgCount+1; case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end else begin if(ProgCount[0:0]==1)begin ProgCount <= ProgCount+1; PARAM1[7:0] <= external_data_bus[15:8]; state <= `PROC_DE_LOAD_16_EXTRA_FETCH_SET; end else begin PARAM1 <= external_data_bus; ProgCount <= ProgCount+2; case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end end end `PROC_DE_LOAD_16_EXTRA_FETCH_SET:begin external_address_bus <= {4'b0,ProgCount}; state <= `PROC_DE_LOAD_16_EXTRA_FETCH; end `PROC_DE_LOAD_16_EXTRA_FETCH:begin ProgCount <= ProgCount+1; PARAM1[15:8] <= external_data_bus[7:0]; case(IN_MOD) 3'b000,3'b001,3'b010: state <= `PROC_MEMIO_READ; default: state <= `PROC_EX_STATE_ENTRY; endcase end `PROC_MEMIO_READ:begin /*Decode MOD R/M, read the data and place it to PARAM1*/ case (IN_MOD) 3'b000, 3'b001, 3'b010:begin case (RM) 3'b000:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b001:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b010:begin /*[BP]+[SI]*/ `invalid_instruction end 3'b011:begin /*[BP]+[DI]*/ `invalid_instruction end 3'b100:begin /*[SI]*/ reg_read_port1_addr <= 4'b1110; state <= `PROC_MEMIO_READ_SETADDR; end 3'b101:begin /*[DI]*/ reg_read_port1_addr <= 4'b1111; state <= `PROC_MEMIO_READ_SETADDR; end 3'b110:begin /*d16 */ `invalid_instruction end 3'b111:begin /*[BX]*/ reg_read_port1_addr <= 4'b1011; state <= `PROC_MEMIO_READ_SETADDR; end endcase if(IN_MOD!=3'b000)begin /*Actually check if 01 and add the 8bits or if 10 add the 16bits ....*/ `invalid_instruction; end end 3'b110:begin /* SP Indirect read*/ reg_read_port1_addr <= 4'b1100; state <= `PROC_MEMIO_READ_SETADDR; end default:begin `invalid_instruction end endcase end `PROC_MEMIO_READ_SETADDR:begin if(memio_address_select==0) external_address_bus <= {4'b0,reg_read_port1_data[15:0]}; else external_address_bus <= {4'b0,ALU_1O}; state <= (memio_address_select?ALU_1O[0:0]:reg_read_port1_data[0:0])?`PROC_MEMIO_GET_UNALIGNED_DATA:`PROC_MEMIO_GET_ALIGNED_DATA; end `PROC_MEMIO_GET_ALIGNED_DATA:begin PARAM2 <= (Wbit==1)? external_data_bus : {8'b0,external_data_bus[7:0]} ; state <= `PROC_EX_STATE_ENTRY; end `PROC_MEMIO_GET_UNALIGNED_DATA:begin PARAM2 <= {8'b0,external_data_bus[15:8]}; if(Wbit==1) begin state <= `PROC_MEMIO_GET_SECOND_BYTE; end else begin state <= `PROC_EX_STATE_ENTRY; end end `PROC_MEMIO_GET_SECOND_BYTE:begin external_address_bus <= external_address_bus+1; state <= `PROC_MEMIO_GET_SECOND_BYTE1; end `PROC_MEMIO_GET_SECOND_BYTE1:begin PARAM2[15:8] <= external_data_bus[7:0]; state <= `PROC_EX_STATE_ENTRY; end `PROC_EX_STATE_ENTRY:begin external_address_bus <= {4'b0,ProgCount}; FLAGS[7:0] <= ALU_1FLAGS[7:0]; case(OUT_MOD) 3'b000, 3'b001, 3'b010 : begin if(memio_address_select==1) state <= `PROC_MEMIO_WRITE; else case (RM) /* Duplicate code with write... */ 3'b000:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b001:begin /*[BX]+[SI]*/ `invalid_instruction end 3'b010:begin /*[BP]+[SI]*/ `invalid_instruction end 3'b011:begin /*[BP]+[DI]*/ `invalid_instruction end 3'b100:begin /*[SI]*/ reg_read_port1_addr <= 4'b1110; state <= `PROC_MEMIO_WRITE; end 3'b101:begin /*[DI]*/ reg_read_port1_addr <= 4'b1111; state <= `PROC_MEMIO_WRITE; end 3'b110:begin /*d16 */ `invalid_instruction end 3'b111:begin /*[BX]*/ reg_read_port1_addr <= 4'b1011; state <= `PROC_MEMIO_WRITE; end endcase end 3'b011:begin reg_write_we <= 0; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_IF_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end 3'b100:begin /*No output*/ if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_IF_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end 3'b101:begin /* Program Counter*/ ProgCount <= ALU_1O[15:0]; instruction_size_init <= 1; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_IF_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end 3'b110:begin /* SP Indirect write*/ reg_read_port1_addr <= 4'b1100; state <= `PROC_MEMIO_WRITE; end 3'b111:begin /* Write to PRAM1 (for microcode calculations) */ PARAM1 <= ALU_1O; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_IF_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end default:begin `invalid_instruction end endcase end `PROC_MEMIO_WRITE:begin /* if memio_address_select == 0 ADDRESS: reg_read_port1_data DATA:ALU1_O */ /* if memio_address_select == 1 ADDRESS: ALU1_O DATA: reg_read_port1_data */ `ifdef DEBUG_MEMORY_WRITES $display("Writing at %04x , %04x",reg_read_port1_data,ALU_1O); `endif if(memio_address_select==0) external_address_bus <= {4'b0,reg_read_port1_data[15:0]}; else external_address_bus <= {4'b0,ALU_1O}; IOMEM <= MEM_OR_IO; state <= (Wbit==0) ? `PROC_MEMIO_PUT_BYTE : (reg_read_port1_data[0:0]?`PROC_MEMIO_PUT_UNALIGNED_16BIT_DATA:`PROC_MEMIO_PUT_ALIGNED_16BIT_DATA) ; end `PROC_MEMIO_PUT_UNALIGNED_16BIT_DATA:begin read <= 1; BHE <= 0; if(memio_address_select==0) data_bus_output_register <= {ALU_1O[7:0],ALU_1O[15:8]}; else data_bus_output_register <= {reg_read_port1_data[7:0],reg_read_port1_data[15:8]}; state <= `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT; end `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT:begin write <= 0; state <= `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2; end `PROC_MEMIO_PUT_UNALIGNED_PREP_NEXT2:begin write <= 1; external_address_bus <= external_address_bus+1; BHE <= 1; state <= `PROC_MEMIO_WRITE_EXIT; end `PROC_MEMIO_PUT_ALIGNED_16BIT_DATA:begin read <= 1; data_bus_output_register <= {ALU_1O[15:8],ALU_1O[7:0]}; state <= `PROC_MEMIO_WRITE_EXIT; end `PROC_MEMIO_PUT_BYTE:begin read <= 1; state <= `PROC_MEMIO_WRITE_EXIT; if((memio_address_select?ALU_1O[0:0]:reg_read_port1_data[0:0])==0) begin BHE <= 1; if(memio_address_select==0) data_bus_output_register <= {8'b0,ALU_1O[7:0]}; else data_bus_output_register <= {8'b0,reg_read_port1_data[7:0]}; end else begin BHE <= 0; if(memio_address_select==0) data_bus_output_register <= {ALU_1O[7:0],8'b0}; else data_bus_output_register <= {reg_read_port1_data[7:0],8'b0}; end end `PROC_MEMIO_WRITE_EXIT:begin write <= 0; if (ucode_seq_addr==`UCODE_NO_INSTRUCTION) state <= `PROC_IF_STATE_ENTRY; else state <= `PROC_NEXT_MICROCODE; end `PROC_NEXT_MICROCODE:begin read <= 0; write <= 1; // maybe we are coming from MEMIO_WRITE BHE <= 0; ucode_seq_addr <= ucode_seq_addr_entry; /*Reused for next address*/ if( ucode_seq_addr_entry == `UCODE_NO_INSTRUCTION )begin /*Finished microcode*/ SIMPLE_MICRO <= 0; state <= `PROC_IF_STATE_ENTRY; end else begin state <= `PROC_DE_STATE_ENTRY; end reg_write_we <= 1; end default:begin end endcase end `undef invalid_instruction endmodule